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ABSTRACT
2089|

An approach to the problem of a shock proﬁting
through a variable atmosphere is presented. A previously
presented theory has beenimproved anda computer program
has been written using the results of the improved theory.
This paper presents the improved resultsand gives a detailed
description of the computer program.

For an atmosphere which varies arbitrarily in the
vertical directionand for a supersonicaircraft witharbitrary
lift and volume distribution the computer program will give
the shock overpressure and intersection points at the ground.
In addition, effects due to aircraft acceleration, flight path
angle and curvature and acoustical cutoff are computed and

presented by the program.
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SECTION I

INTRODUCTION

This report will give a description of a '"Sonic Boom Computer
Program“.* The theoretical development, upon which the computer

program is based, is presented in Section IV and Appendix 1. Since the

A emphasis here is for the operation of the SBCP, discussion of the theo-

retical results will be kept to a minimum.

The SBCP uses the following input data:

1) Atmospheric pressure, temperature and winds between the air-
craft and the ground, and shock-ground reflection factor.

2) Aircraft parameters such as Mach number, altitude, acceleration
rate, volume and lift factors, aircraft length and weight.

3) The analysis is based on ray tube concepts, that is, a small seg-
ment of shock is considered to be propagating down a ray tube and its
strength and location are determined along the ray path until it strikes the
ground. Therefore, another input is the initial ray directions. These are
specified by giving those angles, measured around the flight direction, for
which computations are desired. (That is, the angles ®in Fig. 1, Section
I1).

The computer output gives:

1) A listing of pertinent input data.

2) The location and strength of the shock corresponding to a selected
input angle at intermediate computed points between the aircraft and the
ground.

3) The location and strength of the shock at the shock-ground inter-
section.

The program was written in Fortran and has been operated on IBM
709, 7090 and 7094 computers.

%k
In the remainder of this report the '"Sonic Boom Computer Program' will
be denoted by SBCP.
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Details for operating the program are given in Section II. The
equations which are actually solved are presented in Section III. In
addition the Fortran symbols and their corresponding physical variables
and a brief descriptions of the subroutines are given in this section. Some
improvements to the theory are given in Section IV. The paper in which
the general theory was presented is reproduced in Appendix 1. In Appendix
2 the input and output for two sample problems are given. A listing of the
Fortran instruction cards is given in Appendix 3.

In Appendix IV the theory is extended to include aircraft diving or
climbing and curved flight path effects. Since the original version of this
report (TR 89, Dec. 1963) appeared, these aircraft maneuver calculations
have been included in the SBCP. The present report includes everything
that was in TR 89 plus the above improvements.

Results of some sample computations are given in Appendix V,
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SECTION II

PROGRAM OPERATION DETAILS

II.1 INPUT FORMAT

In order to operate the program the data cards must be arranged
in the following manner:

Control card: The first card is a control card, it tells the following:

1) The number of altitudes at which atmospheric data will be pre-
scribed, this number can be 2 to 100. That is a minimum of 2 altitudes
(aircraft and ground) are required to run any problem and a maximum of
100 altitudes can be handled. This number should be entered so that the
last digit is in column 10.

2) The number of angles, measured about the aircraft axis, for
which output data is desired (see "angle cards",p.4). A minimum of 1 and
a maximum of 21 different angles can be prescribed, therefore this num-
ber can be 1 to 21. It should be entered so that the last digit is in column 20.

3) A problem identification number. This can be any integer from
0 to 99999. It should be entered so that the last digit is in column 30.

4) The input angles mentioned in (2) above can be entered in any
order. However it is necessary to know which of these angles corresponds
to the direction directly below the aircraft. The next entry on the control
card tells which of the input angles corresponds to this direction. This
can therefore be a number between 1 and 21. It should be entered so that
the last digit is in column 40.

5) Part of the output is a listing of the shock stréngth and location
for one of the input angles at computed points between the aircraft and the
ground. That is, a time history of the shock propagation is given. The
next entry tells which one of the input angles this information should corres-
pond to. This can therefore be a number between 1 and 21. It should be

entered so that the last digit is in column 50.
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6) The last entry on the control card tells the computer whether
or not another problem (different atmosphere, different aircraft, etc.)
follows the completion of the problem currently being entered. A nega-
tive number in columns 51 to 60 will stop the computer at the end of the
current computation; no entry or a positive entry will have the computer
read in a new set of data after completion of the current problem.

All the numbers entered on the control card are fixed point integers.
That is, no decimal poiht should be used and the first five entries should
appear in the columns indicated. The last entry (if any) can go anywhere
between columns 51 and 60.

Atmosphere Cards: After the control card the next cards carry atmos-

pheric data. There will be one card for each altitude at which atmospheric
data is prescribed. (The number of atmosphere cards is equal to the first
number entered on the control card,)

These cards are entered so that the highest altitude is first, then
descending in altitude, and the lowest altitude (ground) last. Each card
has the same format and tells the altitude and the pressure, temperature,
headwind and sidewind corresponding to that altitude. All numbets must
have their decimal point and can appear anywhere within the columns

indicated below.

Columns Data

1-10 altitude -~ 1000. in feet
11 -20 pressure pounds/ sq. ft.
21-~30 temperature deg. F
31-40 headwind ft./sec.
41~50 sidewind ft. / sec.

The winds should be referenced to the aircraft direction. A head-
wind is positive and a tailwind is negative. A sidewind in the direction of
the starboard wing is positive, in the direction of the port wing is negative.

Angle cards: The computation starts with an initial ray direction and de-

termines shock properties all along this ray until it meets the ground. The
initial ray directions are determined by the ''angle input'’, these are angles

measured about the aircraft ray (or shock) cone axis. The angle ¢ =0
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corresponds to directly below the aircraft. In Fig II.1 the aircraft is
moving in the direction of the negative x axis and is coming out of the

paper toward the reader.

T N

-9 +o

$=0

¢ = 0 corresponds to directly
below the aircraft

Figure II. 1
As many as 21 different angles ¢ can be specified, they can be entered

in any order and are measured in degrees. The numbers must have their

decimal point and are entered 7 numbers per card as follows:

Columns Data

1-10 first angle in degrees
11 -20 second " " " (if necessary)
61 ~70 seventh ' " " "

1—-10 next card eighth " " " ", etc.

The angle (with decimal point) can appear anywhere within the indicated
columns. The number of successive columns of ten needed for entering
all the angles is equal to the second number entered on the control card.
One of the angles entered must be zero (¢ = 0.0). The number
corresponding to the position of the angle ¢ = 0.0 in the above array is the
fourth entry on the control card. One of the angles can be selected to have
a history of the shock properties between the aircraft and the ground
printed out, the number corresponding to the position of this angle in the

above array is the fifth entry on the control card.
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Aircraft-data cards: The last input cards give thirteen pieces of data by which

the aircraft, flight conditions, and shock-ground reflection factor are speci-
fied. For each of these numbers there are ten columns on the input card,
the numbers must be entered with their decimal point and can appear

anywhere within the field of ten columns. The order of entry is as follows:

Columns Data

1-10 first card aircraft acceleration, ft/sec.’
11-20 " aircraft length, ft,
21-30 » " shock-ground reflection constant
31-40 " aircraft Mach number
41-50 n» " aircraft altitude, ft.
51-60 " " aircraft volume factor
61-70 " aircraft lift factor

1-10 second card aircraft weight, 1b.
11-20 v " aircraft fineness ratio (length/max. diameter)
21-30 » " effective wing length for éft distribution, ft.
31-40 " " flight path curvature x 10°, 1/ft.
41-50 n climb (or dive) angle, deg.
51-60 n n time increment, sec.

The last three entries above involve aircraft dive and climb calcula-
tions, they are defined in Appendix IV. Details of the integration of body
shape and lift distribution source terms are not carried out in the SBCP. An
asymptotic "aircraft shape term" is used (See Section III.1, Eq.III.13). This

term is given below:

Shock overpressure at the ground /
1/4
. 3
_ atmospheric and aircraft 4M
AP = Pg x RC x {propagation terms}X {shape terms}X {Mz -1

. 75 ,
aircraft =\/(VF L ) + cos . Mz - 1. LF2 ., WT

shape terms FR

M2 . . (WC)s
Pg = atmospheric ground pressure WT = aircraft weight

- 1t
P, = pressure at aircraft altitude L - length

FR = " fineness ratio
R = reflecti :
c retlection constant wC = wing chord for lift distribution

M = Mach No.
VF = volume factor

&
b
i

lift factor
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II.2 OUTPUT FORMAT

The output format will be self explanatory, however to itemize:
First: problem number and aircraft data are given
Second: input atmosphere is reproduced
Third: history of shock strength variation for selected input angle is

Presented
Fourth: shock-ground intersection data are listed

Other possible output information is as follows:

1) If the shock is cutoff by atmospheric refraction, the location
and the identification of the corresponding input angle are printed out.
Also, whenever posssible, the shock overpressure at cutoff is presented.

2) If aircraft acceleration effects (that is possible high shock over-
pressures) take place before the shock has propagated 100 body lengths
this fact is printed out.

3) If for some reason the computation to determine the pressure

jump across the shock does not converge this fact is printed out.

I1.3 PROGRAM LIMITATIONS

1) The aircraft altitude must be greater than ground altitude, and
less than or equal to the highest altitude for which atmospheric data is
prescribed.

2) The shock strength is not computed until it has propagated
approximately 100 body lengths from the aircraft. If data is desired closer
to the aircraft the computer can be 'fooled'" by feeding in a small value for
body length, L, and increasing the volume factor, VF, so that their product
in Eq. (II.1) remains constant. Care should be taken when interpreting the
resulting data since the present theory is essentially a far field theory.
That is, the far field result would be correct but the results near the air-
craft might be questionable.

3) The computation time is essentially proportional to the number
of altitude steps taken to carry out the integrations times the number of
input angles. The magnitude of the integration step size is one quarter of

the smallest altitude spacing. For an aircraft at 60, 000 ft. and altitude
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data spacing 1000 ft. (step size 250 ft.) there will be about 240 integra-
tion steps; computation times on IBM 709, 7090 and 7094 are approxi-

mately 10, 2 and 1.5 seconds respectively for each input angle.
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SECTION III
PROGRAM DETAILS

III.1 EQUATIONS

The basic theory is given in Appendix I and Section IV, however
the equations actually evaluated on the computer are presented in this
section. Although the equations were taken directly from the theoretical
development they had to be modified slightly for evaluation on a digital
computer.

All computations start at the aircraft altitude and work down-
ward along a ray to the ground. The coordinate system used has its
origin at the ground directly below the aircraft, hence the computations

start at z =h and end at z = z .
ground

Shock Location:

Equations for the shock location, Eq. (3.10) of Appendix I

are integrated directly

( )

z IV + u,
s
x = —f5 _  ldz
.S‘ nvg
h

ﬁ z > (II1.1)
y = S nv\(; dz
h

s

v dz

[ d
1}
TN
|
[u—
/)]
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After the ray-ground intersection, as determined from above
equations, is computed the coordinates are referred to a fixed coordin-
ate system by the procedure described under the heading '"'shock-ground

intersection' later in this section.

Ray Tube Area

Since we are integrating from altitude z = h downward Eq. (IV.12)

becomes, after setting Vsdt = ds

Vy s sec vy av du
A = (h—z)secv 1 - + Ctanv - sin v —2|d
h a2 M(Mz-— 1) Vacos 3] J d dz
h h
(1I1.2)
where
z
_ ds
S = S‘ (Ez) dZ (III-3)
h

and (ds/dz) is given in Eq. (3.10) of Appendix I.

Pressure Jump

There are two integrals involved in the pressure jump expres-
sion, Eq. (IV.3). The first, I(s), which is defined before Eq. (2.10) of

Appendix I, can be written

_ " Po dwo — [(Y—l)/z] wod po
I(z) = exp S e w7 ag) (I11.4)
z =h

This is simply an integration of atmospheric variables between aircraft
altitude and altitude z. Therefore the quantity, I, can be considered as

another atmospheric variable which can be derived from input data.
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In order to evaluate Eq. (III.4), the density, pp, was expressed in

terms of pressure and sound speed

dp . dp _ da
P P a

The second integral in the pressure jump expression
s

ds

B
0

is evaluated in the form

z
_ ds dz
J = S = B (111.5)
h

The quantity B, defined in Appendix 1, is

1 1
2 2
B = (apg+ wy) I (B'O——)/ A/Z
29
where A is defined in Eq. (I1II.2). Because the ray tube area, A, vanishes
at z = h, the integrand of Eq. (III.5) becomes infinite at that point. This
singularity is integrable, however a little care is required to do it on

a computer. First the integrand in Eq. (III.5) is written

l_ dS: Q(z)
B dz g

and then the integral is written

Zz Z
* Q(z) -
h N h-2z Nhez
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z

Q(z) - Q(z,)
= _ZQ(zh)\,h—z + g dz (IIL.6)
h N h=z

By using Eq. (III.2), Eq. (3.10) of Appendix I, and the definition of B
(recalling I (zh) = 1)

sec vy 1/2 (1IL.7)
Q(zh)z‘[ahgph] '

The integrand in Eq. (III.6) now vanishes at the initjial point z = z

h*

Aircraft Lift and Volume

The main interest in this study is to determine atmospheric and
acceleration effects on shock propagation. Therefore details of the air-
craft lift and volume calculations are omitted. Since the theory is
asymptotic in the sense that it is applicable only at sufficient distance
from the aircraft, a term which gives essentially only the far field
effects of lift and volume is included.

The boom due to volume, for a uniform atmophere, (see e.g.,

Eq. 44 of Ref. 4, Appendix I) is

:_ /8 1/2 1/4
A . ) {S F(n)d,,} T
h 5 N+ 1

(I11.8)

WhereF(x)=%- S‘ M dn
9 N'n-§

: 2

If area S is normalized with respect to (LL/FR)  where L = aircraft
length and FR = fineness ratio = (length/max diameter), and distance,
n, measured along aircraft axis is normalized with respect to L,

Eq. (I11.8) can be written

1 3
Ap _ (M’- 1)/8 /4 (VF)
P }?@ FR
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The volume factor VF varies, approximately, from .55 to .80, depending
on the aircraft considered.
For a uniform atmosphere Eq. IV. 3 reduces to (after letting

K=K_)
v

2 ..
M* -
ap | _ K, 1) (111.9)
P

volume ﬁh3/4 M3/4

Equating the above two equations leads to

3/4 NS 34
K = M 2 L (VF) (II1.10)
v _—17- TR

MmZ-1) 7%

For lifting effects (see, e.g. Eq. (49) of Ref. 6, Appendix 1) the

boom overpressure is

1/2
| 2 B e
_ég_ = Yl% = 1) "C:/?‘P S G (n) dn (I11.11)
2 \Jx+1 h 4 0

where

Ty Ve-E
and
BZ
Il= d ' ZAP(g:B)
ST g Yo, M g .
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The quantity S' is essentially loading along a spanwise strip, and the inte-
gration in Eq. (III1.11) is a summation of the 'loading sources'. If the

integrals in Eq. (III.11) are made dimensionless as follows

Ap = wWT x5 = (aircraft weight)
P = Twsywcy 2P (wing span)(wing chord)

Ap

B =(WsS)B
n,8 = (WC)n, (WC)E ; Eq. (IIL.11) can be written
; 1
Ap _ vz =178 s (WF) /2 (LF) (I11.12)

The lift factor LF varies, approximately, from .5 to .6.
Equating Eq. (II1.9), with KL instead of Kv" to Eq. (III.12) leads to

1/2
K, = N2 s (LF) s (WT cos 9)
M (WC) Pp
In order to combine the lift and volume effects, it should be noted
that the integrals of F and G, in Eqgs. III.8 and 11, should be added and

not K, and KV. This can be accomplished by letting

L
_ 2 2
K = VK + K
(I11.13)
- 3 2
3 4
4M L yE Mi-1(LFf - wT
= | Mol “FR[ teet — = T
i -1 : M'ph-(wc)/z

The SBCP determines the pressure ratio across the shock by using
Eq. IV.3, with K defined above. At the ground the pressure ratio across
the shock is multiplied by a reflection constant, RC, which equals 1.8 ~2.0,

approximately.
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Shock-Ground Intersection

As indicated in Appendix 1, the origin of the ray coordinate system
must move with the wind at aircraft altitude. The ray-ground intersection

(xg, yg) are related to fixed (aircraft wind) axes through Eqs. (3.13) and
(3.14) of Appendix 1:

Xg =xg cos 9-yg sinG+Uhtg

Yg =xg s8in 6+yg cos 9+Vh tg

tg = time for ray to reach ground (I11.14)
Vh = headwind at aircraft altitude

Vh = sidewind at aircraft altitude

The aircraft ground speed, Vg, is given by

2 2
Vg"»\f(Va - Uh) + Vh

"The vertex of the shock is given by the coordinates of ray ¢ = 0,
directly below the aircraft, and other points on the shock are determined
by projecting back the remaining ray-ground intersection points. Since
the fixed coordinate system, to which all this is referred, is aligned with
the aircraft air velocity vector and not the ground speed vector the pro-

jection is carried out as follows:

© Ray-Ground Points

D SINa

(Xs,Ys)
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The shock maintains its shape (changes in Mach number due to accel-
eration are neglected) as it moves in the Vg direction. Therefore points on the
shock (Xs, YS) are related to ray points by projecting back the distance D
as indicated in Eq. (3.15) in Appendix 1. The relations are

X = X + D cos «
s g
Y = Y - Dsina (II1.15)
s g
tan o = ——U—Vh
Va~ Yn
TR 89 16




I1II.2 PROGRAM SYMBOLS (FORTRAN)

The altitudes are numbered: highest altitude, K = 1; lowest
altitude, K = KEND = first number on control card. The atmospheric

variables are

Z(1,K) = wp, Eq.(3.2) in Appendix I
Z(2,K) = pressure, pg

Z(3,K) = sound speed, ag

Z(4,K) = relative wind along x axis, u,
Z(5,K) = relative wind along y axis, vy
Z(6,K) = I, Eq.(III.4)

Zz(7,K) = altitude

Z(8,K) = aircraft headwind

Z(9,K) = aircraft sidewind

S(J), J =1to9 =values of the above Z variables obtained by interpolating
between two input altitudes
The angles are numbered in the order that they were entered
onto the input angle cards, N =1, corresponds to the first angle, ...,
N = NAEND(second entry on control card), corresponds to the last

angle. In the SBCP the angles are denoted

PHI(N) N=1toNEND

DATA (N,J) are output data corresponding to angle N

DATA (N,1) = pressure jump across shock

DATA(N,2) = X shock coordinate

DATA (N,3) = Y shock coordinate

DATA (N,4) = shock propagation time betwéen aircraft and ground

W(l), Z(1), Y(1), AY(])
W (2), X(2), Y(2), AY(2)
W (3), X(3), Y(3), AY(3) = parameters for evaluating Eq. (III.1) second eqn.
W (4), X(4), Y(4), AY(4)
W (5), X(5), Y(5), AY(5)

parameters for evaluating Eq. (III.5)

parameters for evaluating Eq. (IIl.1) first eqn.

parameters for evaluating Eq. (III.1) third eqn.

parameters for evaluating aircraft accelera-
tion term in Eq. (III.2)

W (6), X(6), Y(6), AY(6)

parameters for evaluating the last integral
in Eq. (IIL.2)
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PJ (1)
PJ (2)
PJ (3)
PJ (4)
PJ (5)
PJ (6)

ACC
AF
ALT
APR
AVS

BONG
BSA

BSC

BSV
C

Cl
C2
DL
EL
ELH
EM
EN
FL
G

H
HH
NN
NV
PR

altitude of point on ray path

X coordinate of point on ray path

Y coordinate of point on ray path

shock pressure ratio of point on ray path
shock pressure jump of point on ray path

atmospheric pressure of point on ray path

aircraft acceleration
ray tube area Eq. (IIL.2)
aircraft altitude
previous pressure ratio
shock velocity

a parameter

aircraft length

aircraft lift term

aircraft shape term Eq. (III.13) without Mach number
term

aircraft volume term

Snell's constant = - IVa l cos 6

v, /(M (M- 1)a)f)

BSC- (4M’/(M2- 1) %

integration step size

ray x direction cosine

x direction cosine of ray, initially

aircraft Mach number

ray y direction cosine

lift factor

(a2 ph)—-l/4 = Eq. (IV.5)

the negative of the y direction cosine of the ray, initially
1/H

number corresponding to angle for output data
number corresponding to angle ¢ = 0

pressure ratio

Q(J), J=1,5 = parameters

TR 89
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RC = shock-ground reflection constant

R1 = Q(za) in Eq. (II1.7)

R2 = - (ds/dz)

STH = sin ©

T = aircraft fineness ratio
TEST = a parameter

U = wind speed, up

VF = volume factor

VP = derivative of shock velocity
VS = shock velocity

WL = aircraft wing chord
WT = aircraft wieght

II1.3 SUBROUTINES

In this subsection the various parts of the SBCP will be discussed.

The program consists of a main part with six subroutines.

SUBROUTINE ALTA

The first subroutine encountered is called ALTA. There is a re-~

striction on the input data, that is the aircraft altitude must be greater

than the ground and less than or equal to the highest atmospheric data

point. As the atmospheric data is read in by the computer, highest
altitude first, they are numbered in sequential order. In subroutine
ALTA the location of the aircraft altitude relative to the input altitude
sequence is determined. The aircraft altitude is then made the first
altitude in the sequence and all atmospheric data sequences are re-num-

bered starting at the aircraft altitude and going down to the ground.

SUBROUTINE ONE

In this subroutine initial conditions for all integrations and de-

termined. Also, wind components relative to the ray coordinate system
(see Appendix 1) are computed. In addition, the variable I (z) given in
Eq. (II1.4) is determined.
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SUBROUTINE MID

All integrations are carried out by using the trapezoidal method.
Some integration points fall at altitudes between the input altitudes. In
subroutine MID a linear interpolation is carried out to determine atmos-

pheric data at the points between the tabulated altitudes.

SUBROUTINE LINT

In this and the following two subroutines the integrations which are

required for location of the shock and determination of the pressure jump
across the shock are carried out. For the first 100 body lengths from the
aircraft only the shock location is determined; some of the integrations in-
volved in the pressure jump expression are carried out, however no shock
overpressures are computed. Since the shock overpressure is not com-
puted the true shock velocity is not known; therefore, in this initial region
it is assumed that the shock propagates at acoustic speed.

The integrations over the first 100 body lengths are carried out in
subroutines LINT and FIN. In LINT the integrals are evaluated by means
of the trapezoidal method, with a step size equal to the spacing of input
atmospheric data. This is carried out to the input altitude which is just
above the altitude 100 body lengths from the aircraft.

If the aircraft altitude is the only input data point above that altitude
which is 100 body lengths below the aircraft, subroutine LINT is bypassed.
For this case the integration over the first 100 body lengths is carried out

in subroutine FIN.

SUBROUTINE FIN

In this subroutine the shock location and overpressure integrals are
evaluated between the altitude 100 body lengths from the aircraft and the
input altitude immediately above it. Upon completion of this integration
shock overpressure and velocity are computed for the first time.

At the end of this subroutine the step size for the remaining integra-
tions, which continue until the ground is reached, is computed. This step

size is set at one quarter of the smallest input altitude spacing.
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SUBROUTINE INTEG

The shock location and overpressure integrals are determined in
this subroutine using actual shock velocities. In order to do this an
iteration process has been introduced, this is because the overpressure

integrals is of the form.

V-4

p (z) = g f(z,p(2z))dz=z
h
z—-Az
o f(z,p)dz + é_zz_ (f(z,p (2)) + f (z=Az, p (z=Az)))
h

Since the pressure at the point to be computed is on both the right
and left hand sides of the above equation-an iteration process is required
to determine it. When two successive pressures, at a given point, agree
to within one percent this value is assumed to be the correct value.

It can be shown (Ref. 10 of Appendix 1) that a more accurate expression
for the ray tube area than that given in Eq. III.2 involves integrals along the
shock front. A limitation of the present ray tube approach is that it assumes
flow properties in each ray tube to be independent of properties in adjacent
ray tubes. Therefore integrals along the shock front, through ray tubes,
are not possible. The effect of these (omitted) integrals is to cause a
buildup of ray tube area in opposition to a decrease in ray tube area such as
would occur for an accelerating aircraft. However these integrals are onljr
important when the shock front curvature is large, which occurs near the
""cusp point' on the shock front. At this point these integrals increase in
value until they cancel the aircraft acceleration term in the ray tube area
expression, Eq. I1.2. This behavior is taken care of in the SBCP by setting

the aircraft acceleration term equal to zero at, or near the cusp point.

MAIN PROGRAM

In this part of the SBCP input, output and certain decision making
operations are carried out. The most important of the decisions made is
that associated with the iteration to determine the shock overpressure,

described under SUBROUTINE INTEG above. This iteration is carried out
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12 times. If, after this, the pressures still do not agree to within one
percent the integration step size is cut in half and the procedure is started
over again. This is continued, if necessary, until the integration step size
is 5 feet or less. When this occurs the computation stops as there is some-
thing wrong, either with the theory, the data, or the computer.

Acoustical cutoff is assumed to occur when the shock front is within
approximately 2.5 degrees of being normal to the horizontal direction. If
this occurs within 100 body lengths of the aircraft, the altitude and the ray
direction being considered is printed out. If cutoff occurs below 100 body
lengths from the aircraft shock overpressure data is also printed out.

The last thing the program does is to compute the ground-shock data.
After this is printed out the program either stops or reads in new data if

there is any (last entry on control card).

SUBROUTINE CORR
Here the location of the second flight path point used for climbing

or diving curved maneuvers is determined. As described in Appendix IV,

this point is necessary for locating the ground-shock intersection.

SUBROUTINE SORT

In this subroutine, used only for diving and climbing flight paths,

the ground-shock intersection is determined. Also, the results of the

computation are printed out. The details are given in Appendix IV,
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SECTION IV

IMPROVEMENTS TO THE THEORY

The general theory is given in Appendix I, however, since the
publication of that theory several improvements have been made. These

improvements are given in this section.

IV.l1 THE PRESSURE JUMP EXPRESSION
There is a certain amount of arbitrariness in the dimensional

scaling of the pressure jump expression, Eq. (2.16) of Appendix I. A
more detailed discussion will be given here.

Equation (2.13) of Appendix I can be written

- { m}
(IV.1)
e

That is L = L, when s = s,. The natural initial condition, L = 0 at

s = 0, is automatically taken care of by the above solution. (The
differential equation for L is singular at the initial point, hence the
initial point cannot be used to pr escribe initial conditions.)

Substituting the above result into the top line of Eq. (2.14),

Appendix I
2y L,
P—Po - v+ 1 (IV.2)

Po . M Y2 Ap
29 (s) S‘o B(S) ) B(S)

To determine L, we assume a uniform atmosphere and equate Eq. (IV.2)

to Eq. (2.15), Appendix I

SO 1
2y [ - K_ ds /2
-Y_+I— 0 a.o \/K
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Therefore

P~ Po . , Iv.3
Po 1/2 172 (v-3)
G(So)ao I(S){ } {S\F(gy
h - -
where so /2
S' ds
B(s)
0
G(SO) = SO
(o
A
b 0 -

It should be noted that G(s,) depends on the quantity s, which
has not yet been determined. By letting

s
S‘ ds_  do = ds

NA N
0

g

we have

‘°'o 1/2
S do (IV.4)
/2

G(O’) =
’ (0+ wo)'I {p/ag} "

S

. %
= average over distance oy § /2

By letting 6 approach zero, or the aircraft altitude, wg =0, I =1, we

obtain
- 1 1
G = G(0) = /(a:;1 Py ) /4 (IV.5)
It has been found that using the value of G given in Eq. (IV.5) leads to

good agreement with field test data. Therefore, Eq. (IV. 3) has been
used in the SBCP with G(sg) defined in Eq. (IV.5).
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By using the approach described in this section, one need not
start off with dimensionless variables, as described below Eq. (2.1),

Appendix 1.

IV.2 RAY TUBE AREA
The derivation of an expression for the ray tube area, given in Part
4 of Appendix 1, has been improved. It was found that Eq. (4.4) was too

crude and a better approximation is given below

|v0| cos@
I+|va I At cos 8 —>
Ll -, x
h —>Up
dn
V!
Dv v d
z

Ad d As T

s
The change in distance between rays, Ad, due to a change in slope,

Av, in a distance As along the ray is

Ad =AvAs

Integrating this along the ray

s
d=d.h+ S.Avds (IV.6)

0

where dh= |Va|At cos 0 cos L (IvV.7)

The quantity Av will be considered to be made up of two parts
Av = Ajv + A, v (1v.8)

The first part, A, v, is the initial difference between the slope of the two

rays caused by aircraft acceleration. The second part, A, v, is a change

TR 89 25



in slope due to the interrelation between the shock strength and ray tube

area.
Using Eq. (3.9) of Appendix 1, at the aircraft altitude, assuming
Vs =a,
: “h
sV = ¥ o506
a
and hence
Ayv = - Ava cos ¢ cos 6 (IV.9)
ay M NMZ-1
Variations along the ray are given by A, v, this is determined from
\E

sin v = V_cos 8+ ug

and leads to

AVS Au
= - ] _—8
A,v =tan v [ T sin v — ] (IV.10)
s s
As in Appendix 1, Part 4, we let
A~ zd (Iv.11)

Combining Eqs. (IV.6 - 11}, we obtain after some algebraic simplification

of the acceleration term

Va S sec vh

gs' tan v dVS d.u_g_

_ _ ot

A = z sec Yh {1 afl M (MZ - 1)+ Va. cos 8 Vs [ dt sin Vv T§t ]ds}
0

Actually, a different approach based on the theory given in Ref. 10
of Appendix 1 will give a more correct result. However because of the com-
plexity of that approach it is felt that its inclusion is not justified at this time.
An attempt is now being made to simplify this theory in order to incorporate

it into the present ray tube approach.
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APPENDIX I

EFFECTS OF ATMOSPHERE AND AIRCRAFT MOTION ON THE
LOCATION AND INTENSITY OF A SONIC BOOM

In the present paper the problem of a shock propagating through a variable atmosphere is
considered, and a rather complete treatment is presented. Technigques are given which permit
the calculation of shock strength and location as a function of its initial configuration, the
atmosphere through which it has propagated, and the distance it traveled. A specific applica-
tion of this theory is made in considering the ‘‘sonic boom" caused by a supersonic aircraft.
Problems such as complete acoustic refraction and/or accelerating aircraft, which give rise to
shock configurations that are concave to the direction of propagation, are discussed. Attempts
at solving these problems by acoustic techniques sometimes lead to physically unrealistic
situations involving cusped shocks of high intensity. It is shown that when an approxima-
tion, better than the acoustic one, is used these difficulties are resolved.

Nomenclature

sound speed

ray-tube cross-section area

(a0 4+ we)? I(3) {Aps/as}

Snell’s constant

projected aircraft travel distance, in time A¢, along z
axis

ray-tube energy-source term

gravity component along ray tube

altitude

¢ Wosps — [(v — 1)/2]10epos

exP{ 0 po(we + as) d’}

wave-front normal, z direction cosine

correction for wave-front position

wave-front normal, y direction cosine

Mach number

ray-tube mass-source term

wave-front normal, z direction cosine

direction cosines of wave-front normal

perpendicular distance between wave-front surfaces

(272118

pressure

radial distance

body-shape factor

distance along ray

cross-section area of aircraft

time

time for vertex ray to reach ground

wind speed in X direction

wind speed in z direction

wind speed in z direction relative to speed at aircraft
altitude

wind epeed in Y direction

wind speed in y direction

wind speed in y direction relative to speed at aircraft al-
titude

-aircraft air speed

aircraft ground speed
shock speed

particle velocity along ray
ray coordinate

sk

be
I

axis along direction of aircraft motion, moving with
wind at aircraft altitude

axis along direction of aircraft motion, fixed

ray coordinate

horizontal axis perpendicular to X, moving with wind
at aircraft altitude

horizontal axis perpendicular to X, fixed

vertical axis

vertical axis, moving with wind at aircraft altitude

vertical axis, fixed

ratio of specific heats

initial angle between wave front normal and z axis

Mach angle

angle between shock front and z axis

pogition of wave front in space and time

angular measurement about sircraft axis

density

position of shock front in space

angle between z and X axes

distance along aircraft axis, measured from nose

point on aircraft axis where last characteristic of ex-
pansion fan behind the shock leaves the body

-
[ ]

< b

LI T T T O 1

i§°qn .Q.swtv.z\NNNg
-~ .

Subscripts

fixed coordinate system

evaluated at initial, aircraft, altitude b
components in (,5,k) direction

physical variable, with dimensions

atmospheric condition, lowest-order perturbation
first-, second-order perturbation

k=)
-
[ T |

1. Introduction

A RATHER complete treatment of the sonic boom propa-
gation problem will be presented in this paper. First,
techniques will be given permitting shock-strength deter-
mination as a function of aircraft shape, altitude, Mach
number, and atmospheric wind temperature and pressure vari-
ations. Theshock-strength evaluation is based on a generalisa-
tion of geometric acoustic ray-tube area concepts. Next, the
acoustic ray-tracing equations are extended to describe shock
propagation, and a method for determining the shoek-ground
intersection is given. Techniques developed are general
enough that problems such as complete acoustic refraction
and accelerating supersonic aircraft can be treated.

The following is a reproduction of an article which appeared in AIAA
Journal, Vol. 1, No. 6, June 1963, p. 1327.



The first of these problems, complete acoustie refraction,
occurs when a downward moving ray is refracted upward by
atmospheric variations. At the point of horizontal slope, the
wave front (normal to the ray) has a cusped shape, and two
adjacent rays will cross. Attempts! 2 at describing this situa-
tion by means completely dependent on acoustics can lead
to some physically unrealistic results.  Geometrical acoustic
theory, which describes the wave amplitude (or shock
strength) as being inversely proportional to the square root
of the ray-tube cross-section area, will predict an infinite
amplitude at points where rays cross, corresponding to zero-
tube area. This is a physically unrealistic result; in fact, the
use of acoustic theory which is predicated on small amplitude
perturbations is highly questionable for this situation.

The second problem concerns the wave front caused by an
accelerating supersonic aircraft. For this case acoustic theory
shows the wave front to be concave to its direction of propaga-
tion and the rays, if extended far enough, to interscct. At
the point of intersection, cusped shocks of infinite strength
are predicted.™® The foregoing comments on the acoustic
refraction problem, apply equally to this problem.

The key to handling both these problems is in treatment of
the ray-tube area. = Acoustic approaches always have the
front, propagating at local sound speed and the rays dependent
on ambient atmospheric conditions. For the present approach
the front propagates at shock speed, and a relation between
the rays and the shock strength is obtained. By means of this
relation it is shown that an increase in shock strength will
cause the ray tube to diverge; this diverging, in turn, will
inhibit further increases in strength until finally an equilib-
rium configuration is attained.

Whitham* ¢ developed a theory, for describing real shock
propagation, which includes first-order acoustic terms and
second-order nonlinear tcrms. In Whitham’s and other
works®™® based on his, the assumption had been made that
the disturbances are propagating through a uniform at-
mosphere. This restriction will be removed, and the solution
to the varying atmosphere problem will be given in Sec. 2.
Expressions will be derived there which show the dependence
of shock strength on atmospheric conditions and distance
traveled. These results then will be combined with Whitham’s
to relate the shock to aircraft speed and shape.

In Sec. 3 the acoustic ray-tracing equations, which are de-
rived in the Appendix, and their relation to the aircraft co-
ordinate system is discussed. These equations are then al-
tered to include true shock-propagation speeds instead of
acoustic speeds. In addition, a technique is presented for de-
termining the locus of the shock-ground intersection.

The ray-tube arca is discussed in Sec. 4. An expression is
developed which reduces to Whitham’s® for steady flight in a
uniform atmosphere, and which reduces to Rao’s” for ac-
celerating flight in a uniform atmosphere. This expression is
more general than that used by either of these two authors in
that it includes a term that gives the effect of shock-propaga-
tion speed on ray-tube area,

In Refs. 10 and 11, Whitham uscs an expression relating
shock strength (~propagation spced) and ray-tube area. He
shows that converging rays, such as are associated with a
concave propagating shock, will cause the ray-tube area to
decrease. This decrease will in turn induce a stronuer shock
that propagates faster. The faster propagation of the coneave
part of the shock will tend to flatten the shock shipe until a
stable configuration is attained. Whitham'’s theory involves
disturbances propagating along the shock front; this, how-
ever, cannot be included in the present ray-tube analysis
since the basic assumption here is that the shock propagates
down each tube independent of the adjoining tubes. The
result of the present theory is, however, similar to Whitham’s
in that as the tube area decreases the shock strength will in-
crease, which will then causc the rays to diverge. This diver-
gence induces an increase in tube area until finally an equilib-
rium between the tube area and shock strength is attained.
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One of the main difliculties in presenting this theory is the
interdependence between the three parts of the problems;
shock strength, shock location, and ray-tube area. It is
hoped that the development is reasonably logical and that the
cross referencing within the paper does not prove too distract-
ing. A brief summarizing outline of the results will be given
in Sec. 5.2 '

2. Shock Strength

2.1 Shock Strength and Atmospheric Variations

Assume the shock is propagating through an atmosphere in
which there may be pressure, density, sound speed, and wind
variations with altitude but not with time. Two frames of
reference will be used in this problem. The first is & moving
reference frame in which the coordinate system travels with
the wind at aircraft altitude. As far as the shock is con-
cerned, its strength will be affected by the gradients of wind,
teraperature, and density relative to where the shock starts.
Consider an aircraft moving at a given Mach number and
altitude in & uniform still atmosphere and again in a uniform
moving atmosphere; the strength of the shock as it reaches
the ground will be the same for both cases. However, to an
observer on the ground (in a fixed reference frame) the total
shock distance traveled will be different. This difference is
due, in the one case, to convection of the shock by the uniform
wind. In computing the shock strength as a function of dis-
tance traveled one would expect that the further the shock
propagates from its source, the greater will be its attenuation.
However, in the problem just posed the two shocks travel
different distances but still must have the same strength
upon arrival at the ground. This apparent paradox is re-
solved by measuring shock travel distance relative to a coor-
dinate system moving with the wind at aircraft altitude.

The second frame of reference is fixed with respect to the
ground and is used only when the shock-ground intersection
is computed, in Sec. 3.3. The authors therefore will assume,
unless otherwise indicated, that the coordinate system is
moving with the wind, and, hence, all velocities are relative
to the wind velocity at aircraft altitude.

The equations for conservation of mass, momentum, and
energy along a ray tube are

pr + wpe + pw, + (pwA./A) = M(s)
w, + ww, + (1/p)p. = G(s)
(p. + wp.) — (vp/p)(p: + wp.) = E(s)

Here p, w, p, A = A(s), sare density, particle velocity along the
ray, pressure, ray-tube cross-section area, and distance along
the ray. M(s) and E(s) are mass and energy source terms,
and G(s) is the component of gravity along the ray. The
variables are assumed to be dimensionless; their relation to
physical variables is as follows:

(2.1)

8 = sh ton = ht/ay

Poi = PPA Wph = A0 Doh = Padalp

Constants pj and ay are density and sound speed evaluated at
altitude .

Within the present theory the shock propagates down a ray
tube perpendicular to the sides of the tube. Hence the flow
within the tube, induced by shock motion, will remain inside
the tube provided there is no gradient in the cross wind; for
this case mass and energy flux through a ray tube, 3 (s) and
E(s) are both zero. When there is a cross wind, M(s) and
E(s) are not zcro, their form being quite complicated since
they involve derivatives of the flow variables in the direction
normal to the ray.

The ray-tube area term, A,, was shown by Whitham® (see
also Sec. 4 1) to he proportional to distance, s, along the ray




for uniform flight in a uniform atmosphere. He then general-
ized this definition® to account for an accclerating aireraft.
This will be gencralized still further in See. 4, to account for
a varying atmosphere as well as aircraft acceleration.

The quantities /2(s) and M (s) can be simplified by noting
that they represent mass and energy source terms, i.e., mass
and energy being convected into a ray tube by the wind.
This mass and encrgy will consist of atmospheric plus per-
turbation terms. For the present theory, only the convected
atmospheric terms will be included. Neglecting the con-
vected perturbation terms is in keeping with the assumption
that the propagation of the disturbance down each ray tube
can be treated separately. Since there is no mass or energy
created, the quantities E(s) and M(s) are cquated to the
geroth-order {see Eqs. (2.2)] atmospheric terms on the left-
hand side of Eqs. (2.1), insuring that atmospheric mass and
energy are conserved.

The solution to Eqs. (2.1) will be assumed to take the form
of a perturbation on atmospheric conditions:

P =po+p|(t—0)+p9(t"‘0')’~+...
p=ptplt—0+plt-0+... (22
w=w+wl—0ac)+wl-o0)2+...

In Egs. (2.2) atmospheric terms are zeroth order and are as-
sumed to depend only on distance s. The amplitudes p,, p,,
p1, ete. are to be determined; they also depend only on s.
Time dependence is introduced through the function (¢ — o).
The quantity ¢, a function of s, is equal to 8/ap in a uniform
atmosphere; however, it is unknown in a nonuniform at-
mosphere. Curves ({ — o) = const give the positions of the
wave front in space. The form given in Eqs. (2.2) is valid for
small values of ( — o), i.e., for points near the wave front
(the scaling is assumed to be such that ¢ = 0 corresponds to
soro = 0).

Derivatives of the functions in Eqgs. (2.2) take the following
form

Pe=m+2p(t— o)+ ...
Pe = Pot plt — o) — aulpr + 2p:(t — )] + . . . ete.

Substituting these into the energy equation one obtains for
lowest-order terms

wopos + Pl — woa,) — (Ypo/py) [wopne +

pi(l — woal)] = E(s)
ot

wolpo: — (YPo/Po)pu:] = E(8)
2.3)

1= (YPo/ o)1

The quantity E(s) vanishes either if w, = 0 or if the at-
mosphere is isentropic, py ~ po7.

Using Lqs. (2.2) and the results of Fqs. (2.3), onc obtains for
the mass and momentum equations, respectively, zeroth-,
first-, and second-order equations:

WoPo» + ‘ypo(wo. + 1w, %‘) = —7;)[;)9 M (s) + E(s)

{1l — wea,) — ypotio, = 0

(2.4)
2p(1 — woos) — 2ypocza, + wopr, + YpPowrs +
A,
10, [Po- — oy + 1)+ (%—)] =
Yo (’_’.‘ - ﬂ) M(s)
Po \Po Po

and
wowe, + (1/po)poe = G(8)

wi(1 — woo,) — (1/po)o, = 0
(2.5)
2ws(1 — woa,) — (2/po)p2os + wilwe. — wio,) +

wows, + (1/p0) [P1e — (21/ 7P (Pos ~ pro)] = 0
The zeroth-order equation in (2.4) defines M (s)

M(3) = wopos + potres + wopod./A

The first-order equations in (2.4) and (2.5) are homogeneous
simultaneous equations for v, and p,. In order to have a
nonzero solution the determinant of coefficients must be
gero, i.e.,

('YPo/Po)U.’ - (1 - WJ)’ =0 (26)

or
o, = [£1/(a0 % wo)]

[The first equation in (2.6) corresponds to the eikonal equa-
tion of optics.] Take the plus sign in Eqgs. (2.6) since this
represents outgoing waves, that is, waves propagating in the
+-8 direction. Using Eqs. (2.6) one has

71 = (YPo/ao)mn 2.7

and, differentiating, this gives

= YDs v — Pole
Pu= . + p” (Po- a.) (2.8

The quantities p, and w, can be eliminated by multiplying
the third equation in (2.5) by ypo/ao, adding it to the third
equation in (2.4), and using (2.6). After substitution of p, in
terms of wy by using Egs. (2.7) and (2.8), the resulting dif-
ferential equation is

2wop0 — (v — Dwopee | _
po(wo + ao)

(v + Dt
(wo + ﬂo)’

Refore integrating Eq. (2.9) some comments on the theory
and results can be made. The lowest-order perturbation rela-
tion is that given in Eq. (2.7); this corresponds to acoustic or
weak shock theory. The next result is obtained by omitting
the nonlinear wy? term in Eq. (2.9); this corresponds to the
theory of geometrical acoustics which is the next order (but
not nonlinear) improvement. It can be shown that this
equation agrees with Eq. (56) of Ref. 9 to terms 0(wy?/ay?).
For an isothermal atmosphere with no winds, @, = w0 = 0,
and Eq. (2.9) (neglecting w,?) integrates to w,(Apy)/* =
const. Using Eq. (2.7), this can be written in the form now
commonly used to give a correction for varying atmospheric
pressure to sonic boom strength estimates

71 = Pia(po/Po) 1AW/ A2

By retaining the w,? term in Eq. (2.9) an improvement to
geometrical acoustics is obtained. This is the best that can be
done without involving entropy losses, which are third-order
perturbation effects. Equation (2.9) can be integrated after
introducing the function I(s), where

2wl.+w.[i;—'+”—"'—-“-°‘+
Po G

=0 (29

s wapo — [(v — 1)/2]wope, da}

I6) = exP{ o po(wo + av)
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the resulting integral is

B 2{ ao(s) }m
A(s)po(s)
s ao(s’) 12 ds’
(7 + 1)1(3) .': {A(s')po(s’)} I(s')(wo(s’) + 00(8')]’

Equation (2.10) relates the perturbation strength to dis-
tance along the ray. As the shock moves from the
aircraft the cumulative effect of the expansion wave be-
hind the shock wave is felt. It is seen® * that this is what
causes the attenuation represented by the integral in Eq.
(2.10). The expansion wave, in turn, is dependent on hody
shape. In the next section the relation between shock
strength and aircraft body shape will be determined.

wy =

(2.10)

2.2 Shock Strength and Aircraft Shape

For acoustical theory the wave-front position can be given
by t — o(s) = const; however, it is possible, within the
present improved theory to obtain a better prediction of
shock position. Assume the shock location along a ray can
be given by ¢t — o(s) = —L(s). The quantity L(s) is the
correction of the present theory over acoustic theory. If one
lets V, denote shock velocity

1/V, = (dt/ds) = (do/ds) — (dL/ds) =
[1/(ao + wo)] — (dL/ds) (2.11)

using (2.6). Another expression for V, is obtained by using
the fact that, to the present order of approximation, the
shock speed is the average of the propagation speeds in front
of and behind the shock:!?

Ve = J(wo+ a0+ w+ a) = wo + a0 + (wi + a)(t — o)

local pressure,

P~ P ‘le(
Po Qo

o) = ;:" [—L(s)]
(2.14)
29R/(y + 1)

o[ ]

The constant R, which contains the aircraft body-shape
factor, is determined by comparing Eq. (2.14) to its counter-
part, Eq. (13) of Ref. 5. This equation is

K

= s ds \11
AV (L Zl—/i)

Using Eqgs. (54) and (13) of Ref. 5 (the vy in the former equa-
tion should be in the numerator),

K- [
4vay M2t
v+1 T o1s (M2 — 1)112

fTu ur’
[ 21r j:

o 2y M3
- (v + )12 (M2 — e

Dy — Do
Po

(2.15)

4vay

T
T ﬁ(T)dT]

X

_gpae o
wr ~ pn T }

5 L a=pa]”

Equation (2.15) was derived assuming a uniform atmosphere.
To reduce the results to this case, set pp = py = @, = 1 and
= 0 on the right-hand side of Eq. (2.14), obtaining

[2v/(y + DR = Kh—¥4

= o+ a0 — §(wr + a)L(s)
= wy + ap — [(¥ + 1)/4]w,L(s) (2.12) The factor A~3/4is to make the double integral dimensionless.
Combining the forementioned results, one has
23/4 M3 fqo ,1_ 2 S"(&)dE d }1/2
p=—p P 2rde m—pr
P ! Apy "2 [ (s ds 1'%, (2.16)
o |52 ] L 5]

or
1/Ve = {1/(ws + a0)] + (v + L/4Hwnl/(wo + av)?]

In the foregoing equation the quantity a, was eliminated by
using the weak shock identity [corresponding to Eq. (2.7)]:

a; = {{(y — 1)/2]w,
Equating Eqs. (2.11) and (2.12), and using Eq. (2.10)
dL I

ds s
"B -b%

with
B(s) = (ao + )l (s) [M@]”’
ao(s)
This is integrated to yield

s (18 1/2
’*[ m]

Using the first-order relations in Fgs. (2.2) and (2.7), and
then substituting Eqs. (2.10) and (2.13) one obtains an ex-
pression giving the pressure jump across the shock, relative to

L(s) = R = const (2.13)
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Equation (2.16) gives the pressure jump across the shock, in a
nonuniform atmosphere, as a function of distance traveled,
aircraft shape, and atmospheric variations,

In order to determine the wind component w, along the
ray, the position as well as the slope of the ray corresponding
to distance s must be known. This will involve a simultancous
solving of the ray equations (given in the next section) and
the shock-strength equation, (2.16). The exact expression
for wy is given in Eqgs. (3.2) or (3.11). However, since wind
variation is small in eomparison to sound-speed magnitude, a
simple approximation for wy can be made. One could, for
example, assume the ray to be a straight linc from its source to
its destination and then let wq be the wind component along
this line. The ray-tube area term A is yet to be defined, This
term will be discussed in Sec. 4.1.

3. Ray Tracing and Shock Location

3.1 Acoustic Equations

It will he assumed that atmospheric sound specd ap and the
horizontal winds (ue,%) in the (z,y) directions arc functions of
height z alone; the vertical wind component will he ne-
glected. 1f the coordinate system moves with the wind at
aircraft altitude and is so aligned that the normal to the wave




front is parallel to the (r,2) plane, the acoustic ray equations
(derived in Appendixes A.1 and A3) are

dr  lag + o dy _ v di _ .t

dz noe dz  nae dz  na,

ds dr\? dy\? e _

i -[@E @] e

n=—(1 —ymn c=? 3.1)
[

The wind component along the ray now can be determined,

_ e Ay dr . dy)de
Yo = to 5 +v°ds = (uodz+v°dz)ds
wo(dz/dz) + ve(dy/dz)

[(dz/d2)? + (dy/d2)* + 1]/*

wolag + uo? + 1!
[ae? + ue? + o + 2uglan]'’?

Geometric identities will be developed now by means of
which the shock and ray cone, occurring for any physical
problem, will be related to the ray-tracing equations (3.1).
What is required, for any selected ray, is the position of the
(z,y,2) coordinates of Eqs. (3.1) relative to the (X,Y,Z) air-
craft-coordinate system. The (z,y,2) shock-coordinate system
has wind velocities (uo, t) in the (z,y) directions; since this
coordinate system moves with the wind at the aircraft alti-
tude, the velocities (uo,10) relative to the system vanish at this
altitude. The air-speed vector is along the negative X axis.

It is assumed that data are desired for rays spaced at angles
& (sce Tig. 1) about the axis of rotation (X axis). The ray-
cone angle (=90° — u where u = Mach angle) is set by the
flight condition. All data are determined in terms of x and &.
8 is the angle the wind components must be rotated (about the
Z axis) in order to be lined up with the (z,) coordinates, to
which Eqs. (3.1) refer. Also, since rotation is about the 7
axis, z = 7.

From the definition of u, tan(90° — w) = (M2 — 1)1/2
hence one has, from IMjg. 1,

S = R sind N = R/tan(90° — pu) tand = S/N
tanf = tan(90° — ) sin® = (M2 - 1)V sind

(3.2)

therefore,

— I _—

[1 4 (M2 — 1) sin?d )12

A — 1) sin® (3.3)
[1 4+ (M2 — 1) sin?P|12

Let X be the initial angle between the ray and the positive z

axis; then Iy = cosX.  The Mach number and ray angle are
related to i as follows:

T = R cosd P = 8/sinf = R sin®/sind
tanA = T/P = cot® sind
cos®(M — NV/[1 + (W2 — 1) sin*d |2
L o= cosh = (=17t + (W2 — 1) sintd]'z (3.4)

cosf =

I

sinf

[l

Letting 1, and v be the relative wind components along the
z and y axes, one has

up = (U — 7)) cos@ + (V — V,) «inf
to = —(U — 7)) =inf + (V — V,) cos8 (3.5)

where sinf and cosf are given in Fqs. (3.3).
Snell’s constant is
¢ = aofl evaluated at the initial point

= ar/cosh = — a, M cosf (3.6

z
Y
Projection of Ray
Being Considered
o) END VIEW b) TOP VIEW

Fig. 1 Initial ray-cone coordinates

3.2 Improving the Acoustic Equations

In keeping with the theory as a whole, several parameters
in Fqs. (3.1) will be improved; however, the form of the
equation will be retained. First the local sound-speed term a,
will be replaced by the shock-propagation speed V.. This
substitution can be used in both Eqs. (3.1) and (3.2).

The use of shock-propagation speed instead of sound speed
leaves the derivation of Snell’s law, as given in the Appendix,
open to question. It will be shown now that a plane-propa-
gating shock satisfies the same refractive law. Consider a
shock propagating through a region in which atmospheric
properties (Fig. 2) on either side of some horizontal line are
uniform but different. The component along the z axis (Fig.
2) of the incident shock velocity relative to the wind must
equal that of the refracted shock. That is both sections of
the shock travel along the z axis at the same speed. There-
fore,

(Vi/sinm) — w = (Va/sinws) — us @3.7)

This relation, which corresponds to Snell’s law, will be taken
to hold all along the path of shock propagation.

If one assumes now that the initial shock angle is prescribed
by the Mach angle, one has, after making the identification
siny = —1,

V.
7w 1

= —V,cos8

To obtain this relation Eqs. (3.3), (3.4) have been used, and,
at the initial Mach cone, u, = 0, V,» = ai. One sees then
that, for any direction, the shock propagates at the same speed
as the component of aircraft velocity in that direction. Eq.
(3.8) can he derived directly from Iiq. (3.6) by simply replac-
ing sound speed by shock speed. In addition, the accuracy
of Eq. (3.8) can be improved by using some of Whitham’s*
results relating the initial shock properties to the body slope
at the nose.

In any case, Eq. (3.8) is of considerable importance in that
it gives a relation between the ray angle and the shock velocity
(or strength) V., as well as the ambient atmospheric and
initial conditions,

V.
("‘ + ‘uo)inum = —ayM cos@ (3.8)

-V, .
l = o ¥ ‘."TC-O\—O = —Ssiny (39)

This relation will be used in Sec. 4.1 for determining an ex-
pression for ray-tube area. '

Fquations (3.1) and (3.2) can be rewritten with shock
propagation speed instead of sound speed, and with direction
cosines just defined:

de V. + dy _ ™ a _ 1
2~ alb, dz — nV, dz  nV,
s dr\? dy\? 12
BT [(/) + (d) + ‘] (3.10)
= —--——:——‘—'——- = —sinw n=—~(1—=1)Y = —coswy
w4+ V, cosl
Wy = Ilnl “'- + “01 +- "“z (3.11)

JV.2 4+ ue? + vo? + 2udV,}112
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Fig. 2 Shock refraction through
a nonuniform region

These equations must be integrated simultancously with
the shock strength 1q. (2.16). Equations (3.10) furnish the
shack location and propagation distance s, while Eq. (2.16)
furnishes the shock strength for determining V.. Shock
propagation speed is related to pressure jump as follows:

- y+1(p—p .
V,-—-ao [1+ 47 ( o >] (311)

It should be noted that the V, used here, and in the re-
mainder of this paper, is different from that used in Eqs. (2.11)
and (2.12). In Sec. 2, V, represented shock velocity relative
to a fixed point, s = 0. The V, used here is shock-propagation
speed relative to local wind. The present V, equals the one of
Sec. 2 minus w,.

3.3 Shock-Ground Intersection

"If Eqgs. (3.10) arc integrated from z = 0 toz = —h (i.e., for
an aircraft at altitude k) for a given angle &, a point on the
ray-ground intersection is obtained. This must be related to
a fixed coordinate system before the shock-ground locus can
be constructed. Two simple transformations are required for
this; the ray coordinates [Eqs. (3.10)] are related to the
(X,Y,Z) coordinates by a rotation, and these coordinates are
related to the fixed coordinates by a translation.

The (X,Y,Z) system initially coincides with the fixed sys-
tem (X,,Y,,Z,), its negative X axis aligned with the airspeed
vector. For later times this system moves away from the
fixed system at aircraft altitude wind speed (Fig. 3a).

Thesc two systems are related as follows:

X; X + U
Yy =Y+ Vu

Where ¢ is the time taken by the selected ray to reach the
ground and (U, V,) are wind components along (X,,Y,), at
the airplanc altitude.

The relation between the ray system and the (X,Y,Z) sys-
tem as indicated in Fig. 1b is

X
Y

Equations (3.13) and (3.14), when combined, will give the
locus of the ray-ground intersection. This is the locus of dis-
turbances that left the aircraft at the same instant. What is
desired, however, is the shock locus, i.e., disturbances that
arrive at the ground at the same instant. This is determined
easily for an aircraft flying at constant velocity, for in this
case the shock locus is invariant with time. Consider first the
shock and ray intersections that touch at a common vertex
(Fig. 4). Points on the shock to either side of the vertex cor-
responds to rays that took a longer time to reach the ground.
The shock moves along the ground at aircraft ground speed;
a sequence of shock positions is shown in Fig. 4.

(3.13)

il

z cosf — y sinf
(3.14)

]

z sind + y cosé

Vo

Fig. 3 a) The moving and fixed coordinate systemss
b) air-speed and ground-speed vector relation

Shock

Locus Fig. 4 Ray-shock-ground inter-

section. The shock is symme-
— tric about the V,axis but is dis-
placed in the ¥V, dircction

If for each point of the ray-ground intersection the dis-
tance D (Iiq. (3.15) below] is projected back parallel to the
ground speed direction, the corresponding point on the original
t = t, shock is obtained:

Vit — to)
aircraft gzround speed = (Vo — Un? + Vy2J1/2
(3.15)

|

time for vertex ray to reach ground
time for selected ray to reach ground

]

~s <u

The relation between ground speed and air speed, head wind
and side wind is as indicated in Fig. 3b. Ray travel timesare
obtained from integration of Eqs. (3.10).

4. Ray Tube Area

4.1 - Ray Distance, Atmospheric Variations, and Aircraft
Acceleration

In a uniform atmosphere the shock is cone shaped, and the
ray-tube cross-section area is A = 2#rd (see Fig. 5). TFor the
ray directly below the aircraft, 8 = 0 and rd = re cosy =
rV. At cosp = sV,At cos?u; Ve = air speed, Al = time incre-
ment, 4 = Mach angle. One therefore has 4 =
(27 VAl cos?u)s = (const) & for a uniform flight speed. For
this case one can replace 4,/4 by 1/s in Eq. (2.9), or in
Eqgs. (2.10) and (2.16) replace A by s. With this substitution
Whitham’s result, Eq. (44) of Ref. 4 can be obtained.

This result now will be extended to include cases for which
the atmosphere is nonuniform and the aircraft may be ac-
celerating. The rays will not be straight lines; however, they
may be described by the equation z = z coty, asin Fig. 6. In
this equation the shock angle, v, varies along the ray path.
The distance, d, of any point (z,2) to the ray z = z cotv isd =
z sine — z cosv. Consider, specifically, the distance to the
ray z = (z + ) cot(y + Av)

d = z[sinv — cosv tan(v + Av)] + ecosv  (4.1)

After letting e = V, cosfAL, where V, cosf is the air-speed
component along the z axis (ray-coordinate system), one can
expand Eq. (4.1) in powers of Av and At, obtaining as first-
order terms

d = V,cosfAt cosy — z secvAy (4.2)

The increment Av can be related to increments in shock
speed, winds, and aircraft speed by using Eq. (3.9). This
leads to :

Av = t&ﬂ’ X

|
M2 cos2f — _
{AV, — siny [AV. cosf <—[—]‘CI—TT‘_9—1—£> + Auo]} (4.3

Using

AV,  dVids L dv.
At dz dt * dz
Aug  dup dz

N~ as "

d g

dz
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and combining Eqs. (4.2) and (4.3), one obtains

z tany § dV,

d =~ At «{V. cosf cosy — —n — sinv X
cosy dz

cosf dVe (M? cos?d — 1) + (—hﬁn]]}
vV, dt M2~ 1 dz
Approximating the ray-tube area by A = 2r || , and combin-
ing the equations below (4.3), one obtains finaily

| tanw [dV.

—_—t | — n —siny X
Vacosfcosv § dz

cos@ dV, M2 cos?§ — 1 dug
[ V. dt ( T —1 ) tn dz]]} (44)
The scaling constant, sec?sa, has been inserted in order to
have A = s for a uniform atmosphere and flight speed.
If the aircraft is accelerating, the term dV./dl in Eq. (4.4)
is positive. Neglecting the terms dV,/dz and duy/dz, one sees
that for |2| large enough the quantity within the braces

vanishes. This gives rise to situations involving shocks of in-
finite amplitude as discussed by Rao.” In fact, if one sets

6 = dV.,/dz = dup/dz = 0
V. = ax = sound speed at aircraft altitude
(1/V)@V./d) = M
vy =sin"Y1/M) = p

A =2 sect'z, { cosy +

z = g cosu

one obtains Rao’s result for an accelerating aircraft in a uni-
form atmosphere,

A = (const)s[l — (sM/M?* cos*uV.)]

For the present theory, the term dV./dz is crucial. By
using Rao’s theory, the foregoing expression implies
that for a certain value of & the area vanishes and the shock
amplitude is infinite. The term dV./dz in Eq. (4.4) prevents
this from happening. This is because as the shock strength
increases it propagates faster and dV./dz increases; it will
continue increasing until it counterbalances the negative
contribution from the —dV./d{ term. From then on an
equilibrium shock configuration is attained as it propagates.

Ordinarily, because of the 1/V,, all the terms in Eq. (4.4) are
negligible in comparison to cosy, but when complete acoustic
refraction occurs cosv goes to zero. However, before this can
happen the other terms in Eq. (4.4) increase in magnitude
and the ray-tube area, 4, is prevented from going to zero.
Again an cquilibrium shock configuration is attained.

It should be noted that in the shock strength Eq. (2.16), the
area term is integrated with respect to ray distance s, whereas
Eq. (4.4) gives the ray-tube area as a function of z. This can
be resolved by simply replacing ds, in Eq. (2.16}, by (ds/dz)dz
and using Egs. (3.10) toevaluate ds/dz. -

In closing this section an examination of the expression for
ray-tube area, Eq. (4.4), and its derivation will be made. The
shock refraction Eq. (3.9) relates the local shock angle with
its initial angle. Ilence the terms AV, and Awg in Eq. (4.3)
can be interpreted as contributions to the change in shock
angle from its initial angle as it moves along the ray. Simi-
larly the term AV, is the contribution to the change in shock
angle as the aircraft moves along the flight path. The present
theory therefore considers the initial ray angle as somewhat

z
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Fi ] PATH ) s -
ig. 5 Ray-~tube
coordinates for a hock
uniform  atmos- Shoc
phere Roys

like an equilibrium position and that changes from this posi-
tion are combined with the shock-strength and location equa-
tions, in a complicated manner, to determine a new, local
equilibrium configuration.

5. Conclusions and Outline

5.1 Conclusions

The present theory, when used in its total generality, re-
quires a simultancous solution of the shock-strength equation
(2.11) and the shock-location equations (3.10) with the ray-
tube area being given in Eq. (4.4). By application of this
theory, sonic boom intensity and location can be determined
for arbitrary aircraft and atmospheric conditions. In addi-
tion, the theory can handle problems such as complete acous-
tic refraction and accelerating aircraft, which are beyond the
scope of acoustic approximations.

When treating any specific problem, many simplifications
could be made. For example, if one considered steady flight
in which no acoustic refraction occurred, the ray-tube area
could be simply approximated as A ~ 3. Also, for most cases
the acoustic ray-tracing equations (3.1) probably would pro-
vide sufficiently accurate shock-location data. However, the
use of Eq. (2.16) for shock-strength determination should
give, in all cases, a better answer than the isothermal-pressure
correction.

At the present time a digital computer program is being
written to carry out computations based on the present
theory. Results of these computations and the evaluation of
this theory will be given in a later note.

5.2 Summarizing Outline

A brief summary of the basic assumptions and equations
will be given in this section. It is assumed that the aircraft
altitude, flight pattern, and the conditions of the atmosphere
are known. The objective is to locate the shock-ground inter-
section and to determine how the shock strength varies along
this intersection. First, several angular positions around the
initial aircraft Mach cone are chosen. Corresponding to each
of these positions a ray is located, and the ray (z,y,2) coordi-
nate system is defined relative to the aircraft (X,Y,Z) axes,
This procedure is described in Sec. 3.1.  The next step is to de-
termine the path of shock propagation, using ray-tracing equa-
tions (3.10). These equations, derived in the Appendix, are im-
proved in Sec. 3.2 to account for actual shock propagation
speed. However, in order to determine shock-propagation
speeds the shock strength must be known. The variation in
shock strength, as it propagates along the ray, is determined
in Sec. 2 and is given in terms of pressure jump in Eq. (2.16).
Propagation speed and pressure jump are related in
Eq. (3.12). An important factor in determining the shock
strength is the ray-tube area, and this is discussed in Sec. 4.
Therefore, the ray intersection and the shock-strength varia-
tion at the ground are determined by integrating the ray-
tracing equations (3.10) in conjunction with the shock-
strength equations (2.16) and (3.12), and the ray-tube area
equation (4.4). A technique for putting this in terms of the
shock-ground interscetion is given in Sec. 3.3.
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Appendix
A.l Derivation of Acoustic Ray-Tracing Equations

All equations appearing in Secs. A.1 and A.2 are written
relative to a fixed coordinate system. The transformation to
the moving coordinate system, used in Sec. 3, is given in A.3.
In addition, the repeated subscript summation convention
will be used in order to shorten the presentation.

The equation for the acoustic wave front can be derived asa
characteristic of the Eulerian flow equations. However, a
simple derivation is possible if one starts with the statement:
the acoustic wave front travels in a dircction normal to its
surface, at sound speed relative to its ambicent atmosphere.

If the wave front is denoted by ¢(z,,2,l) = ¢(z:,t) = 0 the
direction cosines of the normal to the front are

n = ¢=i/(¢zzi)”2 = d’:l’/Q (AI)

A point z;, on the surface at time ¢, will at time £ 4 At be at
z: + n;AN, where AN is the perpendicular distance between
the surfaces. Since z; and z: + n;AN are on the surface

¢z, 1) = 0 (A2)
d)(x.-' + n.-AN, t+ At) =0 (A3)

Expanding Eq. (A3) in a Taylor series about the point (z.,t)
one has, after using Eq. (A2) and retaining first-order terms,

ANTL.‘(#,.' + At¢; =0
Divide by At, and then let At go to zero to obtain the surface

normal velocity (dN/dt) = —(¢./Q). The components of
this velocity along the coordinate axes are
(dzi/dt) = —(n:¢./Q) (A9)

These velocity components relative to the wind components,
u;, are

(dzo/db) — wi (A5)

If the velocity components, Eq. (A5), are projected onto the
surface normal one has, from the definition of the velocity of
an acoustic wave front,

[(dxi/dt) - ui]ni = +a (AG)
or

¢ + wisi + aQ =

Equation (A6) describes a wave front moving through the
atmosphere; one sees that the velocity components, Eq.
(A5), must satisfy the relation

dz:/dl) — ui = nia =123 (A7)

These three equations give the velocity of a point, x;, on the
front; the locus of this point, as the surface moves through
space, is called a ray. Equation (A7) shows that, if there is no
wind, the ray is normal to the surface of the front. In order
to solve Eqs. (A7) the direction cosines n; must be determined.
These, however, vary with the atmosphere as one moves
along the ray; the differential equation for this variation will
be determined now.

Letting d/dt denote differentiation along the ray one has,
using Fq. (A1),

dn; 1d nn; d
s a(ﬁdm — Q@ b, (A8)
where
ll Pe) (_1_._1’} P

ad’:i = 6? ¢n‘ + (“ 5_;‘ d’xi

I

0 o
Y ¢, + (ux + 1) 5z ¢
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Differentiating the second equation in (A6) are combining the
result with Eq. (A8) one obtains

1 /dn, du, du, da
r—z_,<-¢-i_[+ b:v.+ ) = mmo +n ™ 5z, (A9)

The right-hand side is independent of subscript ¢ and is the
same for each n;,7 = 1,2,3; therefore the differential equation
for the direction cosines of the surface normal can be written
as

1 fdn, bu,, da 1 [fdng Ouy
n ( T ™on T bxl) B E(W +n a;,"’ ax,)

L (dm 2w
T (dl Ox; * om ) (A10)

Equations (A7), (A10), and n,2 =
six unknowns z;,n; along the ray.

These equations now will be simplified. First make the
identification

1 are six equations for the

(zhzhx&nbni‘yn:‘) = (xyy:z;.l:m:n)

Now assume the cross winds (u,v) and sound speed a to be
dependent only on altitude z; also, vertical winds are to be
neglected. The ray equations now become

dz _ ay _ de _

o ~latu a - met a- "
B4+m4nt=1 (A1ll)

1dl 1 dm 1 /dn da du dv

Td - maz—;.(am—z“z*mzz)

From a solution of the first equality in the last equation,
1/, = m/m, with [, and m,, initial direction cosines. The z axis
has been set as being vertical, however one is still at liberty as
to the direction of the horizontal x,y axes. Let the z axis be
so positioned that the normal to the wave front is parallel to
the z,z plane; then m = m, = 0 (The details of this coordinate
positioning are given in Sec. 3.1.) Equations (A11) now read

dz dy dz -
@ ety a ' a- "
(A12)
dl 1 fdn  da du
9 2 - Y it 22 hade
Btm ! dt n(dt+dz+ldz>

The last three equations in (A12) can be combined to give

d 1 du
d: a (dz + ldz)
which integrates to

(a/l) + u = (ar/ly) + us = const (A13)

This is Snell’s law for a varying atmosphere, the right-hand
side being specified by initial conditions. With Eq. (A13) and
12 + n? = 1, one has integrated the direction-cosine equations.
The ray equations are written now in their final form: -

G _ltu  d_e A1
d:  na dz  na dz  na
ds dz\? dy\? 2
i - [(dz) + (dz) +1] (Al4)

;—l+u=c(const) 4+nt=1

It is assumed that a and u are known as functions of altitude




z. Equation (A14) can be integrated from aircraft altitude to
ground to give the point of intersection of the ray and the
ground and the time it takes the ray to reach the ground.

A.2 Atmospheric Refraction

Complete acoustical refraction occurs when an initially
downward traveling ray bends upward. The cause of this
phenomenon now will be discussed. At the point of horizontal
slope n = 0 and, hence,

c-—wr—a*=(c—u-—a)c—u+a)=0 (Al5)

Assume that the ray moves downward in the negative z direc-
tion (sce Fig. 5); then both [ and n are negative, and the con-
stant ¢ is also negative, as for all practical casesa > u. Hence
Eq. (A15) can vanish only when ¢ — u + a vanishes. Now
consider the ray directly below the flight path; for this case
L= —cos(90° — u) = —sinu = —as/ |V.| where uis Mach
angle and V. is aircraft air speed. When the above results
are combined one sces that the ray will bend upward if
— |V + a + (us — u)-vanishes, i.c.,if @ + (us — u) increases
sufficiently as the ray travelsdownward. A headwind decreas-
ing or sound speed increasing as the ground is approached will
cause a ray to be bent upward. Conversely, tail winds de-
creasing groundward will bend rays downward.

A.3 Transformation to Moving Coordinate System

As mentioned at the beginning of Sec. 2, it is necessary to
measure shock-travel distance and atmospheric wind varia-
tions relative to a coordinate system moving with the wind at
aircraft altitude. In this section relations between the fixed
coordinate svstem used in the prior two sections, and the
moving coordinate system will be developed. In addition,
ray-tracing equations, corresponding to (A12), will be derived
for the moving coordinate system.

Denote the fixed system by (z/,yy,2/), the moving system
(z,,2), and the wind compunents along the z,,y, axes by
uts, respectively.  The two systems are related as follows:

Ty = 2+ ud
yr = y+od (Al6)
Zy = 2

Consider, now, Iiqs. (A12) (a subseript f should be affixed to
the coordinates appearing there) and substitute (A16):

dr dy _ dz
E—la+u—u. dt—v va 2 na
di 1l fdn da du
- C =4 = — Al7
B4nt=1 dt n(d¢+dz+'dz)( )

If one now introduces in (A17) wind components relative to
the wind at aircraft altitude, uo,vo: 4o = 4 — us; vy = v 4 vy,
the cquation takes exactly the same form as (A12). Snell's
law, (A13), can be written as

@/D) +u—u=(a/) + uw = (a/l) = c (Al8)

Therefore, relative to a coordinate system moving with the
wind at aircraft altitude, the ray-tracing equations are as
shown in Egs. (3.1).
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APPENDIX II
TWO SAMPLE PROBLEMS

In this section the input and output for two sample problems
will be given. The first problem, case 1001, inveolves a low Mach
number (M = 1.1) aircraft flying at 40,000 ft. and accelerating at
4 ft./secz; the atmosphere is an ICAO 1959 standard atmosphere.
The second problem, case 0000, has a Mach 2 aircraft flying at
60,000 ft. in a constant atmosphere. The input cards for both problems

are indicated as follows:

A: control card
B: atmosphere cards
C: angle card

D: aircraft data cards

Because of atmospheric refraction due to changes in temperature
with altitude, the shock does not get to the ground in case 1001. There
are, however, quite a few interesting results. The acceleration causes
a peak overpressure at 16650 feet for the zero angle ray. This phenom-

enon occurs at similar altitudes for the other angle rays.
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16
7, 934672
65 118493
60 151403
55 191.80
50, 243461
45, 309445
40, 393,12
25, 499434
20 629466
25. 786433
20, 973427
15, 119448
10, 145546
5y 176049
1. 204049
0. 211642
-45, -30.
LoD 100,0
160000. 8e
3
604 65746
8 65746
0 55746
-30, 0,
O 100,
100000, Be

7

1001 4 s } A

69461 T

~69461
-69461
-69461
-69.461
-69461
-69.61
~65452
—47e74 ? B
-29.96
“12417
5062

23044
41426

55443

59409 P

-15. 0. 15. . 30 45. }C

1.8 1.1 4C000. Y .6 } o
50,

0000 2 1 -1 } A
~44e4
~bLh el
~4464

15, 30, } C

1.8 20 6CC00. ob4 O
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SONIC BOOMs CASE 1001s M= 1,100s ALTITUDE® 4000049 ACC= 4.0009 RC=1680s VF= 0e640¢ LF= 04600

WYs 100000,0¢ LENGTH= 100,0¢

FR» 8,00¢ WL=50,000

ALTITUDE HEADWIND SIDEWIND
(FT) (FPS) (FPS)
70000, =0 =04
65000, =0 =04
60000, «~04 =0
55000, =04 =04
50000, =0 =0
45000, -0 =0
40000, ~-0e =0,
35000, =-0s «0¢
30000, -0 =0
2%000, -0, =0
20000, =0 =0
15000, =0 =0
10000, =0 =0e
50004 =04 =04
1000, =04 =0
Oe «0e =0
CUTOFF ALTITUDEs ANGLE==4%,00
4 X A
(FT) (FT} tFT)
26108, ~66218. 21457,
CUTOFF ALTITUDEs ANGLE==30,00
4 X Y
(FT) (FT) (FT)
20433, ~80315, 18402,
CUTOFF ALTITUDEs ANGLE=~-1%5,00
2 X Y
{FT) (FT) (FT)
15133, ~-98920, 11732,

HISTORY OF SHOCK STRENGTH VARIATIONs ANGLEs O,

b2 X Y
(FT) (FT) (FT)
297%0, -23916, ~0o
29500, 264382, -0
29250, -252%%. =04
29000, -25929, ~0e
28750, ~26611, 04
285000 ‘27299. -0.
28250, -27993, ~04
28000, -28693, =04
27750, -294004 04
27500, -30114, -0
27250, ~30834, =04
27000, -31%62. -0,
267%0, ~32296. =0
26500, -33039, =0,
26250, ~33788, =0e
26000, ~34546, ~0.
257%0, ~35312, -0
25500, -36087, =04
25250, ~36870. ~04
25000, -37661, ~0s
24750, ~38463, =0,
24%00, ~39273, ~0s
242%0, ~40093, ~0.
24000, ~40923, ~0s
23750, ~41764, ~0e
23500, -42615, ~0.

39

PRESSURE
{PSF)

93,672
1184930
151,030
191.800
2434610
309.450
3934120
4994340
629660
7864330
973,270

11944,800
1455,600
17600900
2040.900
21164200

PRESSURE RATIO

040026115

PRESSURE RATIO

0000648093

PRESSURE RATIO

060003973

PRESSURE RATI10

040028460
0,0028199
040027816
060027383
040026937
060026494
040026064
040025651
0,0025257
0400248061
040024525
0,0024187
00023866
040023564
0.,0023278
00023008
040022755
040022517
00022295
0,0022088
040021882
00021692
040021517
040021359
00021217
0,0021092

_SOUND SPE
(FPS)

96746680

€0

967660 °

967660
9674660
967660
9674660
96764660
9724721
9946e 622
1015+660
10384475
10564890
10764930
10964615
1112+019
11156964

PRESSURE JUMP

PRESSURE JUMP

PRESSURE Jump

tPSF)

14963

{PSF)

40603

tPSF)

0eb72

PRESSURE Jume

(PSF)

14814
14820
14817
1810
14802
1793
10784
1e776
1e768
1e762
14756
14750
1e 746
le742
1e739
14737
14736
14735
14736
14737
le741
le766
1le752
14759
14768
16777

TEMPERATURE

(DEG F)

-694610
~694610
-694610
-694610
~694610
-69¢610
-694610
-654520
“4T7e740
«294960
=12,170
50630
23,4640
41,260
55+430
59.090

PRESSURE
(PSF)

7514605

PRESSURE
(PSF)

9574070

PRESSURE
(PSF)

11884913

PRESSURE
{PSF)

637493
6454327
6534160
6600994
6684827
6760661
684ea04
6924328
7004161
707995
715.828
723662
T31.495
7394329
T47162
7544996
7624829
7704663
7780496
7864330
7954677
8054024
8144371
823,718
B33,065
8424412



23250,
23000,
22750,
22%00,
222%0,
22000,
21750,
21500,
21250,
21000,
20750,

20800,

20250,
20000,
19780,
19500,
19250,
19000,
18750,
18500,
18250,
18000,
17750,
17700,
17650,
17600,
17550,
17500,
17450,
17400,
17350,
17300,
17250,
17200,
17150,
17100,
17050,
17000,
169%0,
16900,
16850,
16800,
16750,
16700,
16650,
16600,
146550,
14500,
16230,
16000,
15750,
15500,
15250,
15000}
14780,
14500,
142%0,
14000,
13750,
13%00,
132%0,

43477,
-443%1,
45236,
~46134,
47045,
=4T7970,
«48908,
=49861,
~50829,
~51814,

~52815,
=53834,
=548724
=55929,
~87007,
-58107,
-59230,
=-60378,
=61553,
=-627564
«63989,
~-65257.
«66561,
=-66829,
=-67100,
67375
-67652,
-57931,
~-68212,
~68495,
«~48780,
-69068,
~69357,
«69650,

=69944, .

=T70241,
«T08541
=70844,
=71150,
=~T1459,
«T1772,.
-72088,
=72407,
=72731,
~73060,
-73384,
=73700,
=-74013,
~75590,
=77207.
~78879,
«B0623,
-824%2,
=84383,
~86435,
~88635,
~91019,
=-93642,
~96596,

- =100051,

=104416,

CUTOFF ALTITUDE) ANGLE= 0,

z
(FT)

13242,

X
{FT)

=~104572,6

CUTOFF ALTITUDEs ANGLEx 15,00

pA
(FT)

15133,

X
(FT)

-98921,

=04
~0s
~04
-0
=0
=04
=04
«0s
-0
-0
=04
=0
=0
=0,
=0
=0
=0e
~0e
«0s
=0e
-0
=0
=0
-0
=04
-0
=0
-0
=0
-0
=0
-0,
=0
«0e
-0
=0
-0
=0
-0
-o.
«0e
=04
=0
=04
-0
-0
=0
-0,
-0
~0e
«0s
-0.
-0
&0,
-0,
-0s
=0
«0s
=0
=0
=04

tFT)

-0

(FT)

~11733,

40

040020984
040020894
000020823
040020770
040020739
040020729
040020742
040020781
040020849
040020947
040021080
040021252
040021471
040021742
040022064
040022467
040023083
000023645

040024559
040025621
040026971
040028764
040031440
040031561
040030880
040030795
000031048
040031307

- 040032105
040032966
040033649
040034656
040035475
040036691
0,0037871
040039142
040040545
040042101
040043828
040045746
040047874
040050230
040052827
040055668
040058748
040004907
040004897
0,0004884
040004832
040004763
040004687
040004607
020004526
040004444
040004360
040004275
040004169
040004094
040004012
040003903
040003819

PRESSURE RATIO

040003773

PRESSURE RATIO

040003972

1,787
14799
14813
14827
le844
14862
1+883
14906
14932
14960
1993
2029
24070
24116
24172
20236
20323
20406
26526
20664
20834
2054
3373
34393
36327
30325
36359
34416
34487
34588
34670
34788
34885
44026
helbh
4e313
4e4aT6
40657
44858
54081
54328
56601
56902
6s232 .
64590
0e552
0e551
04551
0e551
0e548
00544
0¢540
04536
03831
0e527
0e522
0e514
06510
06506
00497
0e491

PRESSURE JuMe
(PSF)

Oe485

PRESSURE JUMP
(PSF)

0472

8514759
8614106
8704453
B79.800
8894147
8984494
9074841
917+188
9264535
935,882
9454229
9544576
9634923
9734270
9844346
9954423
10064499
10174576
10284652
10394729
10504805
1061.882
10724958
10756174
10774389
10794604
10814820
10844035
10864250
10884466
1090.681
1092.896
1095,111
1097327
1099¢542
1101757
11032,973
11064188
11086403
11106619
11124834
11154049
11174264
11194480
11214695
11234910
11264126
11284341
11394417
11504494
11614570
117264647
11834723
11943800
1207.840
12204880
123324920
12464960
12604000
12734040
12864080

PRESSURE
(PSF)

12864487

PRESSURE
(PSF)

11884913




CUTOFF ALTITUDES® ANGLE= 30,00

4 X
{FT) (FT}
20433, =80314,

CUTOFF ALTITUDES ANGLE= 45,00

2 X
(FT) (FT)
126108 =66215,

SONTIC BOOMs CASE 1001y M= 1,100
SHOCK~GROUND DATA

ANGLE PRESSURE JUMP
(DEG) {PSF)
-4%,00 O
~30,00 Os
=1%.,00 0,
0. O
15,00 O
30,00 O
45,00 0

Y
(FT)
~18402,

(FT}

-2145%56»

ALTITUDE= 40000,

b4
(FT)

41

PRESSURE RATIO

040048083

PRESSURE RAT!O

0,0026088

PRESSURE JUMP

PRESSURE JUMP

TIME
(SEC)

-1400
=1400
=100
=1400
=1.00
-1+00
=1400

“{PSF)

4e602

tPSF)

1e961

PRESSURE
(PSF)

957.070

PRESSURE
(PSF)

7514605



SONIC BOOMs CASE

WTe 10000040y LENGTH= 10040

ALTITUDE
(FY)

60000,
8000,
0.

Oy M= 2,000

HEADWIND
{FPS)

=04
=0,
-0

ALTITUDE= 6000049 ACC= Os

SIDEWIND
(FPS)

=0s
=0
=0

FRe 8,00 WL~50,000

HISTORY OF SHOCK STRENGTH VARIATIONy ANGLE»-30,00

2
(FT)

49340,
47340,
45340,
43340,
41340,
39340,
37340,
35340,
33340,
31340,
29340,

27340,
25340,
23340,
21340,
19340,
17340,
15340,
13340,
11340,
9340,
T340,
85340,
3340,
1340,
O,

SONIC BOOMs CASE
SHOCK=GROUND DATA

ANGLE
({DEG)

=30,00
Oe

15,00

30400

X
(FT)

=7108,

=hbhbo

~9780,
-11116,
~12451.
~13786,
~15121.
-16456,
=17790,
-19125%,
~20460,
=21794,
-23129.
244673,
=25798,
-27132,
~28466,
~29800.
-3113%,
=32469,
-33803,
~35137,
-364T1,
~3780%,
=39139,
-40033,

Oy M= 2,000,

PRESSURE JuMp
(PSF)

0.810
. 04901
04876
0,810

Y
(FT)

6156,
7313,
8470,
9626,
10783
11939,
130954
14251,
15407
16563,
17719,

18874,

20030,
21186,
22341,
23497,
246524
25808,
26963,
28119,
29274
30430,
31585,
32740,
338964
346704

ALTITUDE= 60000,

X
(FT)

-18569,
~34663,
=309964,
'18569.

42

PRESSURE
{PSF)

6574600
6574600
657.600

PRESSURE RATIO

0.00264984
00022029
040019716
00017893
040016420
040015202
040014176
040013362
040012609
040011938
040011342
040010811
040010335
040009904
040009514
040009157
0,0008830
040008529
040008252
040007994
040007754
040007569
040007331
040007166
040006951
000006844

Y
(FT)

34670,
O
~16088.
~34669.

¢ RC=1eB0¢ VF= 046409 LF= 0o

SOUND SPEED TEMPERATURE
{FPS) (DEG F)
998,446 ~464400
9984446 444400
9984446 ~44 4400
PRESSURE JUMP PRESSURE
(PSF) (PSF)
lab43 6574600
1eb49 6570600
10297 6574600
1177 6574600
10080 6574600
14000 6574600
06932 6574600
06879 657600
00829 6574600
0e785 6574600
0746 657600
0e711 6574600
0e680 6574600
0e651 6576600
04626 6574600
04602 6574600
0s581 6974600
04861 6574600
04543 6574600
04326 6574600
04510 6574600
0s498 6576600
0e082 6574600
00471 6574600
0e457 6574600
0450 6574600
TIME
{SEC)
80e¢12
69437
71482
80s12




50
51

53
52

SYMBOL
LISTS
LABEL

SUBROUT

TABLE

INE ALTA

APPENDIX III

FORTRAN LISTING

DIMENSION Z(95100)sS{9)eW(9)sX(9)sY(9)sPI(T)sQ(I}sAY(9)»DATA(21+5)

1sPHI(21

}

COMMON ZsKENDsCTHsSTHsCsB9SsGsKQoDLsHIRIsWsXsCLlsYsFsVSeVPsC2sAYsPJ
19RSVeBSAPHIsDATAIPRIUSAVSIINRINENDSALT9ELsGeEZsBSCyELHIKASESEMSEN
19sNsACCoRCIBONGINVINNs JOBSIWT o ToWL s VF s FLsAPRsBVP+sTESTsAF s HH

DO 50
IFCALT

KA=K

K=1+KEND

=2(7+K)) 50950,51°
CONTINUE

R=(ALT=Z(7+KA) )/ (Z(T+KA-1)=2(T+KA))

DO 52

J=149

Z(Js1)=Z(JsKA)+R*¥(Z(JsKA=1)=Z(JsKA))

DO 513
KK=K~=K
2(JeKK

K=KA+KEND
A+2
1=2(JeK)

CONTINUFE

KFND=K

FND-KA+2" ™"

G={Z(351)/Z12+1))1%%,25/2(3s1)

St VI 4
Bsv=vr/

T#BONG¥*#*475

BSA=FL#SORTF(WT/Z(2+1}/SQRTF(WL))

RETURN
END
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*

15

LISTR

LARE YL

SYMROL TABLE
SURROQUTINE ONE

DIMFNSION Z(99100)sS5(9)sw{9)sX{(9)sY{F)sPJ(T7)9Q(I)9sAY(9)sDATA(2195)

140HTI(21)

COMMON Z sKENDICTHISTHeCosBsSsGsKQsDLIHIRLIWeXsClaYsFsVSsVPI(29AYsPJ
19BSVIBSAIPHI sDATASPRILsAVSy INRINENDIALTSZLsQsEZsBSCHELHIKASE9EMEN

1sNsACCHRCIBONGINVINNs JOBS»WT s ToWL s VF s FLIAPR $BVYP S TEST 9 AF s HE
E2=0,
B=fFV#*inv=],
NN=CNRF (PHI (M) /57420K8)
REC=SORTF(RAV*¥RSV+NOXRGA*BSA*SORTFIRBY/(FB+14))
N=SINF(PHIIN)/BT74295R)
CTH=Z14/SQRTF (] o +8¥ND¥N}
CTH=CTHXENXSNRITF (R)
FLHES=1,4/(FM*CTH)
HeSORTF(le=ELH*FLH)
HH=1e0/H
Cz=Z2(3s1)/ELH
CI=ACC/EM/B/2(3431)/72(3s1)
Co2=1 el 1L¥RSCH(FMEEI/B) ¥ 425
RI=V1a/ {21391 ) ¥ %1 4B%CSNARTF{Z{29))%H 1))
NN 1R M= 4A
Y{(M)=0,
W(1)="y
W2)Y==FLH/H
W)=,
Wlb)Y==14/(2(39]) )%¥H)
WI5)=C1/H/H
Z2{4+11=0,
Z{5+1)=0,
2(1s1)=",
Z{6s1)=1
PO 8 K=2,4KEND
Z{GoaKY=CTH®(Z2(8eK)=Z(8Bs 1)) +STHR(Z (99K )}=Z2(991))
2(5sX)=CTH*{Z (9K )=2(%s1) 1=STH*(LI(8sK)=2{8s1))
R=Z{4oK)YRZ(A¢K})¥¥D/(C=2(4sK})
VEVAR'TI GRS FEVEICTL GRS
21 oK)= (B+VY/SOGRTF(Z (34K }*%2+V+24%RB)
DO 5 1=143
SII)=aB % (Z{14KI+Z(]14K=-11})
B=Z(1sK)=2(1,,K~1)
V=(2(24K)=2(29K=1))/51(2)
FPe#{Z(R9K)=2{239K~=1))/5(3)
2169KY=Z2(69XK=1)*¥EXPF{(8=e2*S{1)x(V=F))/{(S{1)+S(3)))
QU1 =(Z2 (3214211 92)=2(391) )/ (2(762)=2{T7911)
WiE6)Y=Q (1Y #FLH/C/H/H
DO 16 XZ=149

O(KZ1=0,
RETURN
END
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*

61

62
63

Al

65

SYMBOL TABLE

LISTS
LABEL

SUPROUTINE MID

DIMENSION Z(99100)9S{9)sW(9)eX(9)sY(G)sPUITIsQ(9)+sAY(T)sDATA(2145)
1+PHI(21)

COMMON Z+sKENDsCTHsSTHeCoB9SsGaKQIDLIHIRLIsWeXsCloYsFasVSeVP(29AYePJ
14BSVeBSAsPHI s DATAIPRIUsAVSs UINRINENDIALTsEL 9yQeEZ9BSCrELHIKASEIEMHEN
10N9ACC9QCOBONG9NV'NNvJ0859WT’T9WL9VFoFLvAPRoBVPoTESToAFoHH

S(T7¥=8(T7¥+DL

IF(S(T)I=Z{TsKEND)I=54)165965+61
DL=Z(TeXFENDIHDL=S(T)

S{T7)=Z2(T4KEND)

DO 62 K=XQsXFND

TEUS{T)I=Z(TeK))62963+673
CONT INYF

KQ=x =1
R{S{TV1=Z(TsKQ)Y/{Z(ToKG+1)=Z(T7+KQ))

NO 64 J=1eA

SIUI=Z(JsKQI+RF(Z 1 JoKQ+1)=2(JsK D))

RETLIRN

FND

45



*

SYMBOL TABLFE
LISTS
CABEL
SUBROUTINE LINT
"DIMENSTION Z1951005+S5(9) sWl9) s X(G)sYITToPIIT) QU)o AYIG)+sDATA{Z21957T
1,PHI(21)
"COMMON ZsKENDsCTH3STHsCoBsSsGrKQsDLIHIRL s W XsCl s 7 sFsVSsVPsC2sAY»PJ
19BSVsBSAsPHIsDATAIPRIUIAVSIINRINENDIALTIEL »QsEZ9BSCryELHIKASESEMHEN
1sNSACCIRCYBONG SNV INNI JOBS»WT s TsWL 9 VF s FL sy APRYBVP s TESTsAF s HH
DO 24 K=2,+KQ
EL=Z(3sK)/7(C=Z144K))
IF{ABSF(EL)=a9991205+21+21
21 Qtl)=1. 7
S(T)1=2(T74sK)
GO 'TO 23~ ‘
20 EN=-SQRTF(1e-EL®EL
X{41=1e/{Z(34K)*EN)
X(3)=Z({5+,K)%¥X(4)
X(2)=(EL*Z(34K)+Z 14 sK)I*X(4)
R2=SQRTF (14X (3)#*¥24X(2)*%2)
X{5)=C1#R2 "~ ~
20L=Z2(TsK)=Z{(TsK~1)
R=(Z(34K}=Z{39K~1}1)/72ZDL
BA=EL*(Z(44sK)~Z2(49K~1))/2DL
26 X{6)==FEL*(B+BA)}/C/EN/H
B=0e5%2DL
B0 22 M=246
YIM)=Y{M)+BR(W(M)+X(M))
22 WM} =X{(M)
25 F=(1a+Y(5)4Y(6))}/H
TF(F 127427429
27 F=F-Y(5)/H
Y{51=04
W(5)=0,
C1=0.0
0(2)=1.0
Q(4)=Z2(7+K) )
29 R4=R2/1(Z{3sKI+Z (1K) Y HH*¥2¥SQRTF(F*Z{23K)I/Z(3sK))I*Z(E&9K))
TX(1)=(RI-R&Y/SARTFIZUT s IT-ZTT sKTT
Y(1)=B¥(W(1)+X(1))+Y (1)
Wil)=X{1)
24 CONT INUE
23 RETURN’
END
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* SYMBOL TABLE
LISTS8
* LARFL

SURROUTINE FTN

DIMENSTION Z{99100)195(9) 9w (9)sX(9)sY1G)sPUI7)sQ(9)sAY(I)+sDATA(2195)
1.PHIt21)

COMMON ZsKENDCTHISTHeCoBaSs+kKQsDLosHIR1 9w XsCloY oFsVSsVP(C29AY»PY
1+BSVeBSAsPHIsDATAYPRIUIAVS I UNRINENDIALT sEL sUsEZsBSCrELHIKASEsEMHEN
1sNsACCIRCIBONGSNVINNIJOBS e v T o ToWL oVF s FLIAPR sbVP s TESTsAF s HA

Y{1)1=Y(1)42e#RI*SQRTF(2(T:11=5(7))

EL=S(3)Y/(C~-S(4))

IFLABSF(EL)~e999)12692 7927

27 N(1)1=1.
GO TO 30
26 EN=—SQRTF(1e—-EL#*TL)

X(4)= e/ (ENRS(3))

X{3)=5(5)%X{4)

X{2)=(FL*S5(3)+S5t4u)i+x{4)
R2=SQRTF(1e+X{(2)2%2+X {3} ¥%2;

ZNL=S1T7)=-2(7sKQ}
R=(S{(3)-Z(3,KQ))/2DL
BA=EL*{S(4)=2(4+KQ))/72DL
X(8)=C1#*R?2
73 X{6)==EL*{R+BAJ/C/EN/H
A=NgH%7N
NN 28 M=2 46 )
Y{VI=Y(M)+R* (X M)+ (V))
7?8 wWi{M)y=X{({™)
24 Er{le+V(2i+4Y (D) )/H
IF(F)Y 34438,727
L4 F=F~Y(8)/H
(1:(\.
N{2Y=1.
Y(5)=040
W(S)=040
GO T 17
27 R4=R2/7((S(2)+S( 1)1 #¥2xS(QI*¥SORITF(F#S(2)/5(32) 1)
X{1)=(R1I=R4)/SORTF(2(T7+1)=5(7))
Y(1)=BR (W (1)} +X{1))+Y{7)
Ww1)Y=X(1)
WII)I=W{T)=RI/SOARTF(Z(T91)=St7))
28 DL=Z{T+KG)

KL =XEND-1

DO 35 K=KQeXL

B=Z(TeK)=Z(TeK+1)

25 DL=MINIF (DL oH)

DL==e25%DL

29 H=G*S{6)1%S(21¥5(3)

HA=SQRTF(Y (1) #S(2)%F*#(Z2(7+11=5(7))/75(3))

PR=C2/R/HA
VS=S{2)%({]1e+eb2B6%PR)

VP=({VS=5(31)/DL
A3 F=F%{Z2{7,1)=5S(7))
A0 RETHRN

Ean
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v *x

41

43

44

42

48

417
416

49

LIeTR

LAREL

SYMBOL TABLE

SUBROQUTINE INTFG

DIMENSION Z(9100)9S(9)sW(O9)sX(S)sY{9)sPI(T)sQ(9)sAY(9)sDATA(2195)
1sPHI(21) .

COMMON Z sKENDICTHsSTHsCsB9sSeGsKQsDLIHIKLsWIXoCloYsFsVSsVPsC29AYIPJ
1sBSVIBSAsPHIsDATAYPRIUSAVSs UNRIMNENDYALT9EL sQsEZ9BSCrELHIKASEsEMeLN
19sNsACCIYRCIRONGINVINNs SJOBSoWT o ToWLOVF s FLIAPKIBVP 9 TESTsAF oHH

FL==VS/ 1S (4)=-C)

IF(ABSF(EL) 6999141594394 3
Q{1)=1.

GD TO 49

FN==SORTF (1e—FL*FL)

X(6)=14 /EN/VS

X{2)=(EL*VS+S(4))®X(4)

X{3)=S8(8)%X(4)

RP=SORTF (1e+X(2)**¥24+X(3)%%2)

Bi=({S(4a)=U)*EL /DL
X{8)=CI*R? :

X({6)==EL*(VP+B1)/C/EN/H

B=0e5*DL
DO 42 M=2,46

AY{M)Iz=Y {(M)+BE{W({M)+X{M))

AF=1e+AY(H)+AY(6)

IF{AF=a01)4894179417

AF=AF=-AY(5)

C1=0.

AY(5)=0aC
Y{5)=uel
W(5)=Ca 0

N(H)=3,

F=(Z{T741)=S(T7))*AF/H

XE1Y=R2/7S{E)/LLSI2)4+5(]1 ) ) *# 2% SORTF(S(2)*F/>(3)))

X(1)==XxX(1)

AY(L)=Y (1 )+R*(w(l)+X(1))

B=G¥S{AY*S () *%D

PR=e5*(C2/R/SORTFIAY (1) *S(2)¥F/S5(3))Y+APR
VS= e 5*¥(AVS+S (3 )% (1 04+e4266*PRY)

VP=(VS=AVS) /DL

RFTURN

END

48




* LABEL
* SYMBOL TABLE
CSBOOM

DIMENSION Z€9+100)95(9)sW{9)}eX(9)sY(9)sPJI(T)eQUO)sAY(9)sDATA(21+5
1 2)yPHI(21)

COMMON Z sKEND9sCTHsSTH9CoB9SsGIKQeDLIHIR1IWIXICLoYsFoVSsVPsC29AY 4P
14BSVeBSAsPHIsDATASPRIUSAVSs INRINEND 9 ALTsEL#QeEZsBSCoELHIKASESEMSEN
1oNsACCoRCoBONGINVINNs JOBSIWToToWLIVFIFLsAPRIBVP S TESTeAFHH

COMMON CRVePSIeTAUy PSeTSIXDsYDIZD sVTeMP
310 RCAD 200+KENDsNENDsKASEsNVINNyJOBS

READ 2019 (Z(ToK)2Z{2+K)sZl14K)sZ(BsK)sZ(99K)9sK=1sKEND)

READ 202+ (PHI(N)+N=)1sNEND)

READ 2029ACCsBONGIRCIEMsALToVFoFL sWToToWL sCRVIPSI»TAU

UM=ASINF(1.0/EM) *#57,2958
IF (90+40-UM=~PSI) 11911413

11 PRINT 204 9KASE2EMsALT
PRINT 218

218 FORMAT (39HONO SHOCKS AT GROUND DUE TO CLIMB ANGLE)
GO TO 38

13 B=(ALT~1004%BONG)/1000
IFIB=Z(T7+KEND))12+512+39
12 PRINT 204+ KASE+EMALT
PRINT 213
GO TO 38
39 DO 112 K=1,+KEND
Z{ToK)=Z(TsK)*1000
112 Z{3sK)=49#SQRTF(Z2(1+K)+45946)
2 PRINT 205+KASEsEMeALTYACCIRCoVFoFLoWTsBONGeToWL +PSTeTAUSCRV
PRINT 206
PRINT 207 ¢ (Z{TsK)92Z(BsK)oZ (99K sZ(20K)eZ{3eK)eZ(1eK)oK=21sKEND)Y
DVC=040
‘MP=1
IF (ABSF(PS1) + ABSF{CRV)) 40440441
41 DVC=140
CALL CORR
40 CALL ALTA
1 DO 111 N=1ysNEND
N=N
DO 5 U=1s5
S5 DATA(NsJsMP)=0,
CALL ONE
S(T7)=Z(T+1)~100*BONG*COSF(PHI(N)/5T43)
C ACOUSTIC INITIAL INTEGRATION
la KQ=1
DL=0.
CALL MID
IF{KG-1118+18+19
19 CALL LINT
IF(Q(2)~14)25+23425
23 Q(2)=0,.
PRINT 216sQ(4)sPHI(N)
25 1F{Q(1)=~14)18921418
18 CALL FIN
IF(QU2)~14)22+24422
24 Q(2)=0,
PRINT 216+S(7)sPHI{N)
22 TF(Q(1)~1e)20421+20
21 PRINT 2154S(7)sPHIIN)
GO TO 111
C . SHOCK INTEGRATION STARTS HERE
20 ADL=475%#DL
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89
71
76
95

97

DLT=DL
U=5(4)
AVS=Vs

. BVP=vVp

CALL MID
TEST==24
CALL INTEG
IF(Q(1)~1e)35493
Qt1)=0e

IF (DL+10.0) 78431931
IF(TEST+14)B82+834983
TEST=TEST+1.,
APR=PR
GO TO 85 o L
V=2,*ABSF{PR~APR)/ {PR+APR)
1IF(V~e01)86+86+87
TEST=TEST+1,

.. APR=PR

72

4

93

IF(TEST=10,0) 85+85,88
IF(DL+54)T78977s77
S(7)=S(7)=DL

. DL=e5%DL .

VsS=AVS
vP=BVP
GO TO 81

PRINT 217sPHIIN}
GO TO 91
PRINT 214sPHI(N)
PRINT 211
DATA(N»4sMP)==140

.GO TO 90

TF(NN=-N)B9+374+89
IF (DVC~140) 45445,89
IF (EZ) 3619364990
EZ=l.
PRINT 2109 (PHI(NN})
PRINT 211
PJ(6)=S12)
PJ(4)=PR
PJ(5)=S(2)*PR
PJ(1)=5(T)
PJ(3)= AY(3)®CTH+AY(2)®#STH+AY (41 %Z2{9,+1)
PJ(2)= AY(2)%#CTH=AY(3)¥STH+AY(4)*2(8,1)
PRINT 212s{(PJ(1)s1I=1,6)
IF (DATA{Ns4sMP)) 111489,89
DO 71 M=1,6
W{MI=X (M)
Y(M)=AY (M)
IF(DL+10e)72476976
DL=ADL
IF(S(7)=2(74yKEND))70s70595
IF {Q(5)=140) 92593994
IF (AF-0e05) 97997480
DL=MAX1F{=~5040sDL)
GO TO 80
Q(5)=Q(5)~=1
GO TO 80
DL=DLT
Q15)=040
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” GO TO 80

~70 . . DATA(Ns1eMP)=RC*Z(2+KEND)*PR

DATA(Ns& sMP)=Y(4)

e DATA(N#3sMP)I=Y(4)%#2(991)4Y(2)%STH+Y{3)#CTH

DATA(N’ZOMPJGY(2)*CTH—Y(3)*STH+Y(0,'Z(801)

~-111. CONTINUE

IF (DVC~1e0) 42948449
48.-. DVC=240
ALT=ALT+ZD

i PSInPSI=VTR#CRVASIGNF (TAUWPST)

MP=2
GO TO 40

49 CALL SORT

GO To 38

42 VG=SQRTF(Z(9s1)#%24(EMRZ(391)=2(Bs1))%n2)
e B=2(991)/VG

BB=(EM*Z(3:1’-Z¢B'1)’/VG
DO 102 N=1+NEND
IF (DATA(Ns4»MP)) 10141014103

..101 . DATA(Ns2sMP) =0,

DATA(Ns3sMP) =0,
DATA(N»19MP)=0,
GO TO 102

103 . DST=VG*{DATA(N+4sMP)~DATAINVs4sMPY}

DATA(Ns29MP)=DATA(NS29MP)+DSTHBB

cmo—... . DATA(N939sMP)=DATA(NS34MP)=DST#B

102 CONTINUE

.......... PRINT 204+ KASEsEMyALT

e PRINT 208

PRINT 203

PRINT zo9.tput¢~t.coATA(N.J.Mp).J-l.A).N-1.NEN00'”
.38 IF(JOBS)311+310+310
311 CALL EXIT

..200 FORMAT(6110)

201 FORMAT(F104094F10e3)
202 FORMAT(7F1042)
203 FORMAT(19HOSHOCK~GROUND DATA )

.-..204 . FORMAT{1BH1SONIC BOOMs CASE 15¢5Hs MmF6e3912Hs . ALTITUDE=FTe0) .
205 FORMAT(18H1SONIC BOOMs CASE 15y5Hs M=F6e3+12Hs ALTITUDE=FT40sTHs

1 ACC=F74395H9 RC=F4e295Hs VF=F6e4395Hy LF=F643/1H s5H WT=F941,9H»
1 LENGTH=F6el96Hs FR=F5.2¢5Hs WL=oF643+s8BHe ANGLE=F742+s6Hs TAU=FG6e2s
1 4HSEC«12Hes CURVATURE=FT743/1H0)

206  FORMAT (1HOBXBHALTITUDE7XBHHEADWINDBXBHS IDEWINDBXBHPRESSURE4X 11HSO

. 1UND SPEEthl1HTEMPERATURE/11X4H(FT)11X5H(FPS)11X5H(FP$’11X5H(PSF)8
2XSH(FPS)IXTHIDEG F)/1H )

. 207 FORMAT (1H F15.043F16¢39F13e34F15.3)

208 FORMAT(1HOs9X»5SHANGLE » 7X s 13HPRESSURE JUMPs 6Xe1HXs15Xs1HY 10X s4HT1
IME/1H »9X9SH(DEG) 910X sSH(PSF ) 99X s 4H{FT) s 12Xs4HIFT) 99X eS5HISEC)/1H )

209 FORMAT(1H sF14429F15e392F15e0sF1342)

210 FORMAT(1HO»43HHISTORY OF SHOCK STRENGTH VARIATIONs ANGLE= F6e2)

211 FORMAT(1HO+11Xe1HZ¢15Xe1HX»15Xe1HY 48X s45HPRESSURE RATIO PRESSU
1RE JUMP PRESSURE/1H » 9Xs4HIFT) s 12Xe4HLIFT) 012X s4H(FT) 31X s5H(P
1SF)»10Xs5HI(PSF)/1H )

212 FORMAT(1H 93F15.09F19e7sF1763+F15.3)

213 FORMAT(1HO,»3BHGROUND 1S CLOSER THAN 100 BODY LENGTHS}

214 FORMAT{24HOCUTOFF ALTITUDEs ANGLE=F642)

215 FORMAT (42HOCUTOFF BEFORE 100 BODY LENGTHSs ALTITUDE=F10.2+8Hs ANGL
1E=F6e2)

216 FORMAT(56HOACCELERATION EFFECTS BEFORE 100 BODY LENGTHS, ALTITUDE=
'1F104248Hy ANGLE=F642)

217 FORMAT (38HOCOMPUTATION DOES NOT CONVERGEs ANGLE=F642)

END
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(S )

1!
12

1
1160
2

44
45

SUBRCUTINE CCRR \
DIMENSIGN Z(3,100)9S(9)sW(9)4X{9)sY(9),PI(T)+sQ(9)+AY(3),DATA(2]1,+5,

1 2),PHI(21)

CONNMCN Z4KENC,CTHySTHyCyByS,GyKQyDLyHyR1yWoXyCLyY4FyVS,VP,C2,AY,PJ

1+1BSVsBSA,PHISCATAZPRyU, AVS,, JNRyNENDyALTEL,Q¢EZyBSC+ELHsKASEEM,EN
1,NyACCoRCyBONGyNVy ANy JUBSyWT, Ty WLy VF, FLyAPR,BVP,TESTyAF,HH

COVMMON CRV,PSI,TAUy PSeTSyXDysYDsZD 4VT,MP

VALF(X)=5URTF (1 9*(ALF*2 O*BETA*X)"Z)_

CRV=CRV#1.0E~-06

P51=PS1/57.2557795

IF (PSI) 3,4,3

PSI=ABSF(PSI)

TS=SIGNF(TAL,PSI)

VT=SQRTF(({ENM=Z(3,1))#COSF(PSI )~ 2(871))’*2+((EM*Z(3'1))*$INF(PSI)

1)se2)

ALF==TANF(PSI)

BETA=0.5+%CRV#(1.0+ALF2#2)%s1.5

XD=0.

QUAD=0.

DO 1 I=1,10

TEFX0) 11,12,11
QUAD={VALF(0.)+4.0%VALF(XD/2.0)+VALF(XD))#*XD/6.0
X 1=XD

XD=XI~(QUAD-TS*VT)/VALF(XI)
IF(ABSF((XD-XI1)/XC)=0.01) 2,241

'CONTINUE ,

PRINT 11C0,XI,XD

FORMAT (1HOl4HERROR MESSAGE.2X53KX CCRRECTICN FGR CLRVED FLIGHT P

1ATH DID NOT CCANVERGE./1HO)

Z0={XD=BETA+ALF}=#XD
YD=-TS#72{9,1)

IF (Z0) 5,5+44
IF (PSI) 45,46445
XD=-XD
YD=-YD

D=-7D
PSI = PSI-VT#CRV*TS
GO 10 5 7

PSI1= "TAU*VT=CRV
PSI=PSI#57.2$57795
RETURN

END{1y190+4090»191¢1,0,0,04C3C90,40)
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SUBROUTINE SORT

SUBROUTINE SORT

DIMENSION £{9,108),S{9),N(9)4X{914Y(9),PJ(7),019),AY(9),DATA(2],5,
1 2)yPHI(21) ,4(21) ,SG121,45)

. COMMON ZyKENDyCTHySTHC1B1S+GyKQoDL yHyRL ¢WoeXoCly Yo F VS, VP4C2,AY,PJ

11
116

12

19

13

132
14
15

186
1ce

17

18

21
21e
22

220
200

300
1100

1101
1102

331
1193
3027
1104

14BSVyBSAyPHI s DATAYPRyULAVSe INR NENDALT 4EL4Q4E2¢BSCoELHKASELEM,EN
14N,ACC (RC+BONG s NVyNNyJOBS1WT o Ty WLy VFFL,APRy BVP ,TEST 4 AF 4 HH

COMMON CRV,4PSI3TAU, PSyTSeXDeYDyZD 4V MP
NSUM=eNEND

TAVG=_,

D0 10. N=1,NENC

JIN)=_

IF{CATA(N,4,2))11,11,12

DC 117 L=1,3

DATA(NsL,2)=3.

J(NY=1

GC TC 12

DATAIN,4,2)=DATA(N.4,2)~TS
DATA(N,3,2)=CATAIN,3,2)+YD
DATA(NS2,2)=DATAIN,2,2)+XD

IF (DATA(N,4,1)1)13,13,14

DO 13. L=1,3

TDATAIN, L, =30

JIN)=1

IND=JINY

GC 1D (15,1614 IND
TNSUM=RSUM=-2 T

G0 70 120

TAVG=TAVG+DATA(Ny &1 V+DATRIN, 4,727

CCNTINUE

TF INSOMY 17,17,18

K=1

GO TO 3acC

K=2

TAVG=TAVG/FLOATFTNSUM)

DO 2C-. N=1,NEND

IND=J (N} T

GC TOD (21522)+IND

DO 21 L=1,3 .

SGIN,L)=3.D

GC To 2.8

B={DATA(N, 4, 1}-TAVG)/(DATA{Ny4,1)~DATA(N,4,2))
DO 22. L=1,3 T
SGIN,L)=CATAIN,L,1)-B#(DATA(N,L,1)=DATA(N,L,2))
CONTINUE )
PRINT 1103,KASE,EM
FORMAT (18HI1SONIC BODOM, CASE I5,5H, M=F6,.3/

IH3+9X s SHANGLE ¢ TX4 I3HPRESSURE JUMP, 6Xy1HXy 15Xy 1HY, 10Xy 4HTI

1ME/1H ,9X45SH(DEG ),y 10X SH{PSFI s 9Xs4H(FT),12X,4HIFT) ,9X,5H{SEC)/1HD
1 18H KAY-GRQUND DATA )

ALTI=ALT-ZD

PRINT 11Cl1,ALTI,(PHLI{N),(DATA{N,L+1)sL=1,%),N=1,NEND)
PRINT 11J1,ALT ,(PHI(N)},{DATA(N,L,2),0L=1,4),N=1,NEND}
FORMAT (12HZALTITUDE = F7.0/(F15.24F15,3,2F15.0,F13.2)
PRINT 11C2

FCRMAT (1H3/19HISHOCK-GROUND DATA /1HM{)
GC TO (301,322),K

PRINT 1123 -

FCRMAT ({1HJ21HNO SHOCK=GROUND DATA.)
RETURN

PRINT 1TCA TPRITNY s (SGINS LI L2172} . TAVG ,NS1 S NENDT™
FORMAT (F15.2,F15.3,2F15.0,F13.2)

RETURN 777 77 ST
E_ND(!, 1,'.0 |_CV'0171!_1}41719!01_9107107’0v0)
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APPENDIX IV

CLIMBING, DIVING, AND FLIGHT PATH CURVATURE EFFECTS

AlIV.l RAY ANGLE GEOMETRY

In this section we will describe an extension to the general theory
which is given in Appendix I. This extension will permit inclusion of
flight paths which are curved, climbing, or diving. The results, however,
are restricted to aircraft motions which are in a vertical plane. The con-
tributions which arise from lateral motions can be determined by going
through geometrical arguments very similar to those given below.

To include diving and climbing effects in the general theory we
first introduce a new coordinate system (x%, y*, z¥),

Ray
Cone

Figure AIV.1

x* is tangent to the flight path and the velocity is in the negative x* direc-
tion, y* is perpendicular to x* and is horizontal, z* is perpendicular to y*
and x* and points upward. The coordinates (x%,y*,6 z*) are to form a
right-handed system, and the aircraft is moving in the x%, 2% plane. The
angle ¢ will be used to identify any ray in the initial ray cone (see Fig.A1IV. 1)
This angle has the same meaning as that defined in Fig. II.l, page 5 and

Fig. 1, page 31. Any unit vector in the initial ray cone (which is normal

to the initial shock cone) has components relative to x*,y*, z¥ , given in
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terms of Mach angle and rotation angle ¢:

Nx* = ~ sin [
NY* = - cos | sin ¢ (AIV.1)
N = -~ cosS [ cos ¢

For climbing aircraft the angle ¢ , between x* and (horizontal)
X is positive; for diving aircraft ¢ is negative. That is, y is measured
from the x* to the X axes, positive in the counterclockwise direction.
The components of unit vector N, given in (AIV.l), relative to X, Y, Z

coordinates are

NX = - sinp cos ¢y —cos p cosé sin ¢
N = — cos M sin ¢ (AIV.2)
NZ = sin p sin ¢ — cos . cos ¢ cos ¢

We now want to construct the "ray coordinate system" x,y,z.
Recalling (see discussion below Eq. (A.11) of Appendix I) that the angle
8 is determined by requiring the ray to be initially in the x,y, z plane;

we let £, m, n be the x,vy, z direction cosines of the unit vector N.

Y
b
X
2]
» X
Rotating about the Z = z axis:
L = NXcos 6+NYsm9
m = NX sin 6 + NY cos 6 (AIV.3)

n:NZ
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In order to have m = 0:

"\
N .
tan 8 = Yy - cos B sin ¢ '
Nx sin p cos Y + cos B cos ¢ sin
- (A IV.4)
N Nx
Sin 0 =  ——t— , cos 6 = e
JNZ + N2 ]NZ+Nz
y x Y X J

Combining the results of Eqs. (AIV.3) and (AIV.4), the initial

x direction cosine of the ray is

2
£, = - cosp J[tanp cos¢+cos¢sin\p] + sin’ ¢

(AIV.5)

Egs. (AIV.4) and (A1V.5) reduce to Eqs. (3.3) and (3.4) of Appendix I
when the climb or dive angle { equals zero. Also, all the results of
Appendix I can be applied using the more general definitions given in
(AIV.4) and (AIV.5).

The results presented in this section make it possible to determine
the ray locations and shock strengths for aircraft on straight climbing or
diving flight paths. However the technique used for determining the
shock-ground intersection curve (see page 15) is inapplicable to the
diving-climbing aircraft problem. This is because for each instant along
the flight path, the rays leaving the aircraft will have a different ground
intersection curve. The main reason for this is that the aircraft altitude
is continuously changing. The technique developed on page 15 assumes that
each set of ray-ground intersections is the same and to know any one implies
knowledge of all, therefore a shock-ground curve can be constructed
although the rays that meet it have left the aircraft at different times. In
the third section of this appendix we will describe a method for determining

an approximate shock-ground intersection.
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It is not too difficult to include aircraft flight path curvature in
the analysis. This is of considerable importance for determining the
ray tube area used in shock strength computations. If the flight path is
concave downward, two successive rays will be directed toward each
other in a manner very similar to that of an accelerating aircraft. At
some point below the aircraft the rays will converge leading, locally,
to a high shock overpressure. The theory for this will be derived in

the next section.

AIV.2 FLIGHT PATH CURVATURE

In Section IV.2, page 25, perturbations to the ray inclination
angle, v, were found. T\hese perturbations arise from two effects; the
first, A; v, is the initial difference in the slopes of two successive rays
due to aircraft acceleration. If the aircraft were flying on a curved flight
path there would be an additional contribution to the difference A;v. We

will derive this second contribution in this section.

V
W+A4X%\/z*
4
v N > X

¥ ¥

At the initial point, A, the flight path is at an angle | with respect
to the horizontal; at point B (assumed to be an infinitesimal distance from
A) the angle has changed to ¢ + A . Relative to a coordinate system
setup at B, the components of a unit vector, identified by the angle ¢ ,

in the ray cone has components (see Eq. (AIV.l).

N; = — sin J
? = — COos U sin$ (AIV.6)
—NE = — cos L cos ¢
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The bar notation is used to indicate variables at point B. In order to
relate the components of N in (AIV.6) to the x*% y¥, z¥ system we must
rotate an amount Ay about the y axis. Keeping terms of first order in

Ay ; i.e., sin Ay, cos Ay =1

N, = —sinp - cosp cos $ Ay

N = - cos i sin . (AIV.7)
y*

—-z* = gin p Ay — cos b cos §

We now must identify the angle ¢ with the angle ¢ used in the
previous section. At point A, we passed a plane through the x¥* axis
making an angle ¢ with the vertical (see Fig. AIV.l). At point B we
passed a plane through the x axis making an angle ¢ with the vertical.
In order that the two rays, corresponding to ¢ at A and $ at B, lie in

the same plane, defined by ¢, we must have

N R
y*  _ tan ¢ = cos | sin ¢ . (AIV.8)

Nz* coSs | cos-:¢.e— sin p AY

Letting ¢ = ¢ + A¢ we obtain from (AIV.8)

Ad=—sindtanp AY (AIV.9)

We can now determine the change in initial ray direction due to
changes in both aircraft Mach number and flight path slope. First we

recall the identity
siny = - (¢
therefore

Ay v = —sec v, Al . (A1IV.10)

TR 89 59



By using (AIV.5) we can determine

\
94 o1
_ h dp h

ALy, = 3 am MMt gy A
- (AIV.11)
dp e 1 AV.a
where sin b = l/M, m—:— (M M2 1) , AM = )
h

After carrying out the differentiations in (AIV.11), using (AIV.9),
and substituting the result in AIV.10) we obtain, finally:

Avacosz vh sin )
MV = - secv, 1- 5 (sian—cosqb'\}MZ—l )
M(Mz— l)a\h | Ih | cos v

A‘llJCOS o} {COS 8 (cos "/—I:/I—Z—l— — sin Yy cos ¢)~-sin® sin¢}
M

(A 1IV.12)

It is easily shown that for a straight and level flight, & = Ay =0, Eq.(AIV.12)
reduces to Eq. (IV.9) on page 26. Of the terms multiplying Ay, the one

cos 8 cos YNz ] is largest. Therefore the coefficient of Ay is positive
and a negative curvature, Ay < 0, has the same effect as a positive accel-
eration. For an accelerating, climbing (take off) flight path the effects of

a positive acceleration and curvature will offset each other. Similarly

for a decelerating, diving (landing) flight path the negative acceleration

and curvature offset each other.

With 4; v given in (AIV.12) the ray tube area term (see Eqs.(IV.12)
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and (IIL.2)) is

-1
Va[MZ(MZ— 1)] ,
A =zsecv,|1l-5s > I—M siny -~ cos ycos & »JMZ...l
h a-hllhlcose cos?y
h
-k =28 d)z (cosq;l\/ - siny cos¢—tanB sin )
Mcos VL
sec vy z dVS du
— 5 _ s 0
+ Vacose g tan v (dz sin v I Ydz (AIV.13)
h

The term k is the rate of change of flight path angle with respect
to distance along the flight path

I 4
vV, dt
a

i.e., k =

This is, by definition, the flight path curvature.
The curvature can be related to aircraft motions as follows:

Consider a curved flight path,

Va

lift

[_
s -
T

weight

=X radius of curvature

<
w
[

w

Figure AIV.2
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with the (simplified) force diagram as shown in Fig. AIV.3. Balancing

the radial forces at the instantaneous center of curvature

o~

w
g

| <

= L -~ Wecosy

(L— Wcos y)g
W V72

=] R

therefore k =

When lift, L, is greater than W cos ¢ the aircraft is increasing its
flight path angle and'the curvature is positive; when L is smaller than

W cos { the curvature is negative.

AIV.3 SHOCK GROUND INTERSECTION

When an aircraft is either climbing or diving the shock-ground
intersection chrve varies with time. The problem is, therefore, basically
different from the one in which the aircraft is flying horizontally. This
latter problem is truly a steady state situation and the shock-ground
intersection curve is invariant.

The shock-ground curve is the locus of disturbances which reach
the ground simultaneously. By integrating the ray equations (III.1) we
obtain the locus of disturbances which leave the aircraft at the same time.
There are many ways to determine a shock curve when ray curve data
are known; however the one chosen, and described below, seems to be
comparatively simple and uses a minimum of computer time.

Two points on the flight path are determined which are separated,
in time, by an increment 7 . Then, the ray ground intersections are
computed for each of these points. To be specific, assume data are
determined for seven angles ¢ about the flight path; therefore the com-
puter determines seven ray-ground X, Y coordinates, seven ray travel
times, and seven pressure jumps for each of the two points on the flight
path. A mean ray travel time is then found by simply averaging the

fourteen computed travel times; i.e.,

17
= g B (ot

Ity t oty (AIV.14)

t
mean
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where t,. or t. is the ray travel time from point A or B on the flight

Ai Bi
path corresponding to angle ¢i . Then, using this mean time, we de-
termine by linear interpolation (or extrapolation) the corresponding

X, Y coordinates and the pressure jump Ap as follows:

= X, . + . (Xg; = X

i mean Ai t -t ) (AIV.15)

Ai

with the identical formula being used with Y or Ap substituted for X.
The resulting coordinates are, approximately, the ground inter-
section points of disturbances (shock) arriving at the ground simultane-
ously. The pressure jumps are the pressure jumps across this shock.
It is recognized that the above computation gives some hypothet-
ical "mean" shock and its strength. This is simply intended as an aid
in visualizing the ground-shock pattern. The computer will print out
the ray-ground data for both flight path points as well as the derived

shock data, and the operator can interpret all the data as he so desires.

Alv.4 PROGRAM DETAILS

Program Inputs

The last three entries on the "aircraft data cards" (see page 6)
are the flight path curvature (1/ft), the climb or dive angle (deg), and
the time increment 7 (sec) between the two flight path points. Since the
curvature is usually a very small number it is to be read in as (curva-
ture) x 106. A positive curvature indicates the flight path angle is in-
creasing, and a negative curvature indicates a decreasing flight path
angle. A climbing aircraft will have a positive flight path angle, and
a diving aircraft a negative angie. 'he time increment between flight
path points has been left as an input for the convenience of the operator.
It has been found that a five-second interval has led to satisfactory

results.
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Program Calculations

If both the curvature and the climb (or dive) angle are zero the
SBCP will operate as described in the main body of this report. If
either one or both are nonzero two additional subroutines are used.

These are named CORR and SORT. These will be described below.

SUBROUTINE CORR - In this subroutine the second point on the flight

path is determined, assumeing that the first point is at the origin. Since
motion in the vertical X, Z plane the flight path can be approximately

described as

z = ax + 8 x’ ]
with a = —tan §, B =1/2k(1+(17‘)3/2
.
¢ = flight path angle (see Fig. AIV.1) (AIV.16)
k = flight path curvature 5

If the aircraft flight path velocity (see Fig. AIV.3) relative to a

fixed coordinate system were denoted VT’ we can write
V _ .’Z 2 _ dx [1 2 7
T = x +z0 o= - = + (a+ 2B x) (AIV.17)
Z

o)

Figure AIV.3

Integrating (AIV.17) over the time increment 7, assuming VT is constant

AX
2
TV g ﬁ + (¢ +2B8x) dx =0 (AIV.18)
0
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solution of (AIV.18) for Ax gives the x coordinate of the second point on
the flight path, this is accomplished in subroutine CORR by a Newton-
Raphson iteration. Equation (AIV.16) is then used to determine Az. In
subroutine ALTA all atmospheric data above the flight altitude are dis-
carded. This means that whenever two points on the flight path are
used the higher one must be computed first. Subroutine CORR takes

care of all situations for diving, climbing or level flight.

SUBROUTINE SORT - In this subroutine the computed ray-ground data,
for the two flight pathpoints, are referred to a common origin and time
scale. The linear interpolation described in Eqs. (AIV.l4 and 15) is

then carried out, and finally all the data is printed.
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APPENDIX V

EXPERIMENTAL RESULTS

In this section the results of several computations with the SBCP
will be presented. For all the cases described the same aircraft model
was used. Different flight and atmospheric conditions were investigated.

The necessary aircraft parameters were:

.64
.6

100, 000 1bs. volume factor
100 ft. lift factor

weight

]
"

length

max dia.= 12 ft.

The basic atmosphere, unless otherwise indicated, was taken from

ARDC 1959 Model Atmosphere.

Figure A V.l

This figure indicates the ground-shock intersection curve for an
aircraft flying above a jet stream. Superimposed on the ARDC atmosphere
the jet stream starts at 50,000 ft., builds up linearly to 200 ft/sec at
35,000 ft and then falls to zero again at 20,000 ft.

Five cases were tested. These were aircraft velocity 0° (parallel),
45°, 90° (cross jet), 135° 180°(anti-parallel) to the jet stream direction.
For all cases, effects on pressure jump across the shock were negligible
by time the shock reached the ground. While propagating through the jet
stream the shock strength (Ap/p) tends to increase when in a region where
the headwind (tailwind) is increasing (decreasing); conversely shock strength
tends to decrease when the headwind (tailwind) is decreasing (increasing).
For all cases the variation within the jet srtrea.m was at most 10% from the
uniform atmosphere case.

The three cases shown in Fig. AV.l are uniform (no jet stream)
atmosphere solid line; 45° jet stream, dash dot line; 90° (cross wind)
dashed line. The groups of symbols correspond, reading from left to
right, to ¢ angles 45°, 30°, 15°, 0°, ~15°, -30°-45°. To facilitate
identification the alternate angle symbols (45°, 15°, —15°, —45°) are

filled in. It is interesting to note that the —45° ray for the 45° direction
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jet stream gets cut off and never reaches ground. The —45° ray, cross-
wind case nearly gets cut off; it does get to the ground but considerably

further out than the uniform atmosphere case.

Figure AV.2

For this case a perturbation on the ARDC temperature profile
was introduced. A sample perturbation is shown in the left figure. Four
cases are shownin the right figure.

1. standard atmosphere

2. temperature inversion and return to standard, centered at
10,000 ft.

3, temperature inversion and return to standard, centered at
5,000 ft.

4. temperature inversion between 5,000 ft. and ground.

In case (4) the temperature fell from standard at 5,000 ft. to about
25° F at the ground. For all cases the pressure jump decreases (increases)
when the shock propagates into an increasing (decreasing)temperature region.

It should be noted that for a standard atmosphere the shock
strength, Ap, remains nearly constant for almost all of its travel near the
ground. See, for example, case (l). The reason for this is that although
the pressure ratio Ap/p is decreasing with distance in accordance with
Whitham's theory, the ambient pressure, p, is increasing as the ground. is
approached. These two effects counterbalance each other and Ap remains
nearly unchanged.

A further comment can be made. Almost all atmospheric pertur-
bations which occur above about 15,000 ft. altitude are " forgotten" by time
the shock reaches the ground. That is, it is only those phenomena occurring

near the ground which will affect the shock strength at the ground.

Figure AV.3

Acceleration effects at different Mach numbers are investigated
here. The Mach number has a pronounced effect on the location of the
high pressure, due to focusing, region. Due to limitations of the ray

tube approach the magnitude of the pressure jump at its peak value may
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not be too accurate, however the location is correct. For all cases shown
the shock directly below the aircraft is considered.

The pressure drops off considerably, after the high pressure
peak. Also the pressure jump at the ground, far the M = 1.2 case for
example is close to that which would occur for a nonaccelerating aircraft
at the same initial flight condition, For the M = 1.1 case the shock is cut
off before it reaches the ground, due to the increasing temperature as the
ground is approached. For the M = 1.3 case the shock gets to the ground
before the pressure peak is reached.

Note that the buildup to the pressure peak takes place over an
extended region, approximately 10,000 ft for the M = 1.2 case. Whereas

the actual, unusually high pressure region is quite localized.

Figure AV .4

For this case we considered the effect of a temperature inversion
and acceleration induced pressure peaks near the ground. Conditions were
setup so that for a standard atmosphere the pressure peak occurs at about
1000 ft altitude.

A temperature profile was introduced which was standard to
5,000 ft and then fell to 24°F at the ground. The effect of the inversion
was to cause the pressure peak to occur sooner, i.e., at a higher altitude.
The location of the pressure peak had, within the limitations of the present

theory, very little effect on its magnitude.

Figure AV.5

This case was essentially the same as that shown in Figure AV.4

except that the aircraft altitude was 50,000 ft. For a standard atmosphere
the shock meets the ground before the pressure peak occurs. However,
when a temperature inversion, near the ground, is inserted the pressure
peak occurs sooner; i.e., above the ground. The boom at the ground for
this latter case, is actually less than that for the standard atmosphere
plus acceleration case. If the ground altitude were about 2,000 ft. the
boom in the presence of a temperature inversion could be much greater

than the standard atmosphere case.
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Figure AV.6

In this figure the effects of flight path curvature and aircraft

acceleration are shown. A hypothetical (nonrealistic) situation was
constructed to indicate the general shock behavior. The atmosphere

was assumed to be constant with a sound speed equal to about 1000 ft/sec.
This same atmosphere was used for problem on p. 42. In addition, an
aircraft dive angle of 15 degrees was assumed.

The output for case 1 of Fig. AV.6 is given on the page following
this figure. This output is typical of one for problems which include
diving or climbing aircraft on curved flight paths as described in
Appendix IV. Also, this output can be compared with the one on page 42
to see the difference in the ground effects between a horizontal ﬂight and
a diving flight. For the case on page 42 the pressure jump at the ground
is lower although the aircraft Mach number was higher. This is due to
the fact that for a diving aircraft the shock travel distance is less.

In case 1 of Figure AV.6 no acceleration or curvature effects
were introduced. For case 2 an acceleration of 36.4'ft/sec2 was used.
‘For case 3 a flight path curvature of — 14.5 x 10.-6ft.—l was chosen to
cause a pressure peak at approximately the same altitude as for case 2,
Case 4 éhows the additive nature of these two effects, half the acceleration
and half the aarvature were used., For case 5 a positive curvature was

introduced, this just cancelled the acceleration effects.
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Figure AV.,2. Temperature inversion, M = 2, alt. = 60,000 ft.
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SONIC BO0OM, CASE 0, M= 1,500, ALTITUDE= 6000C0.s» ACC= 0. s+ RC=1,80, VF= C.5640C, tF= O.
WT= 100000.0s LENGTH= 100.0, FR= 8.00, WL=50.000, PSI= ~15,00, TAU= 5.00SEC.y CURVATURL= C.

ALTITUDE HEADWIND SIDEWIND PRESSURE SOUND SPEED TEMPERATURE
(FT) {FPS) (FPS) {PSF) (FPS) {DSG F)
60000, -0. -0, 657.600 998,446 -44,400
8000. -0 -0. 657.600 998,446 -44,4C0
0. ~0. ~0. ©57.600 998,446 ~44,600

HISTORY DF SHOCK STRENGTH VARIATION, ANGLE= 0.

b4 X Y PRESSURE RATIO PRESSURE JuwP "PRESSURE
(FT) (FT) {FT) {PSF) (PSF)
48000, -6065, -0. 0.0025819 1.698 657.600
46000, ~7077. ~0. 0.0023288 1.531 657.600
46000, -8089, -0. 0.0021082 1.386 657,600
42000. -9101. -0. 0.0019286 . 1.268 6574600
40000. -10113, -0. 0.0017807 1.171 657,600
38000. -11125. -0. 0.001656G i.n90 657.600
36000. -12137. -0. 0.0015590 1.025 657630
34000. ~13148, ~-0. 0.0014614 0.961 657.L00
32000. -14160, -0, 0.0013870 0.712 © 857,600
30000. -15171. ~0. 0.0013175 " 0.866 657.600
28000. -16183. -0. 0.0012548 0.825 657,600
26000. -17194. -0. 0.0011985 0. 788 657.600
24000. -18206. -0. 0.0011476 0.755 657.670
22000. -19217. -0. 0.0011016 0.724 657.600
20000. -20228. -0. 0.0010596 0.697 657,600
18000, -21240, -0. 0.0010212 0.672 657.000
16000. -22251. -0 0.0009859 0.648 657,600
14000. «23262. -0. 0.0009523° N.627 657+600
12000, -264273, -0. 0.0009231 0,607 6574 €20
16000. -25285. ~0. 0.0008950 0,589 657.600
8000. -26296, -0. 0.000863%9 0.571 657,630
6000, -27307, ~0. 0.00084836 0.558 651600
4000. -28318. -0. 0.0008226 0.541 657,620
2000. -29329. -0, 0.0008043 0.529 657.6C0

0. ~30341. -0. 0.0007810 0.514 6574600
SONIC BOOM, CASE 0, M= 1.500

ANGLE PRESSURE Jump 3 7 TIME
(DEG} {PSF) (FT) (FT} {SEC)

RAY=-GROUND DATA

ALTITUDE = 60000.

-30.00 0.850 -35971, 28111. 75,47
o. 0.924 -30341, -0. 67.31
15.00 0.904 ~-31654, -13344, 69.21
30,00 0.850 -35971. -2B111. 75.47
ALTITUDE = 58062,
-30.00 0.873 -42043, 27203, 78.06
0. 0.947 - -36594, -0. 70.13
15.00 0.928 -37865. -12913. 71.98
30,00 0.873 ~42043., -27793. 78404

SHOCK~GROUND DATA

-30.00 0.829 ~-30595, 22915, 73,21
0. 0.971 -43396. 0. 73,21
15.00 0.939 ~40629. =12721, 73.71
30.00 0.829 =30595. -24915, 73.21
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